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Abstract

I examine R&D misallocation across firms and over time. I develop a model in which
firm innovations differ in expected profitability and knowledge spillovers. Firms invest
according to profitability, not knowledge spillovers, misallocating R&D and lowering
growth. Using US patent data, I find that highly innovative firms consist of (i) firms
that patent frequently and (ii) highly cited firms. Quantifying the model reveals over
investment by the former, under investment by the latter, and that R&D misallocation
has increased over time. Rising R&D misallocation since the 1970s explains over one
third of the observed decline in aggregate productivity growth.
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1 Introduction

The United States has experienced coinciding slowdowns in productivity growth (Aghion
et al., 2019a) and research productivity (Bloom et al., 2020). I examine R&D misallocation
caused by rising profit dispersion (as documented by De Loecker et al., 2020) as a potential
driver of both slowdowns. I find that aggregate productivity growth could be 18% higher
by reallocating R&D across firms and that rising R&D misallocation has lowered growth by
around 11% since the 1970s, over one third of the observed decline.

I examine R&D misallocation caused by mismatches between the private and public re-
turns to innovation. Private returns to innovating, such as market power and profits, reward
innovators for incurring R&D costs and are intended to align firm incentives with the public
returns to innovating, such as knowledge spillovers and output growth. However, empirical
evidence shows that public and private returns often do not coincide, at least at the inno-
vation level (Hall et al., 2005; Kogan et al., 2015; Abrams et al., 2018). In practice, many
innovations provide private returns in excess of public returns. For example, evergreening
patents—in which a firm extends the effective life of its patent by issuing new patents on mi-
nor modifications of the original innovation—allows the innovating firm to extend its market
power but may contain almost no public value beyond the original patent.1 In contrast, many
innovations suffer the opposite issue in which public returns outweigh private returns. For
example, many innovations were, or led to, breakthrough innovations but were not profitable
to the innovating firm, leading these innovations to be abandoned.2

At the firm level, R&D becomes misallocated when the relative expected private and
public returns to innovation differ across firms. Firms with high relative expected private
returns (compared to public returns) over invest while firms with low relative expected pri-
vate returns under invest. This mismatch could arise, for example, when some innovators
are disproportionately capable of exploiting the patent or legal system (such as through ev-
ergreening) or when some innovators are more likely to produce breakthrough innovations
(such as young firms). R&D misallocation may also be driven by factors unrelated to inno-
vations, such as if large firms disproportionately extract rents through market power or if
young firms lack funding to pursue innovations. Rather than take a stance on specific sources
of R&D misallocation, I indirectly measure the costs of R&D misallocation through gaps in
measured private and public returns.

To start, I develop a model of heterogeneous innovative firms with flexible differences in
1Jaffe and Lerner (2004) document many other examples of distortionary practices, such as patenting

trivial or well-known innovations without prior patents.
2An example is that Hewlett-Packard introduced computers with touchscreen technology in the early

1980s but the technology did not become widely used until the introduction of the iPhone in the 2000s.
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the expected private and public returns to innovation. The structure builds on Klette and
Kortum (2004), in which a continuum of goods are produced by multi-product firms. Firms
produce quality-differentiated varieties of individual goods and hire skilled R&D workers
to innovate. An innovating firm invents a new higher quality variety of an existing good,
displacing the incumbent producer (i.e., creative destruction). Firm R&D capabilities scale
proportionally with the number of goods produced, allowing larger firms to innovate more
frequently. Additionally, firms differ in ex-ante types that affect both R&D costs and the
expected returns to innovation.

My main departure from the standard model is to allow for a separation of the private
and public returns to innovation. Innovations are characterized by quality and knowledge
improvement to the currently produced good. The private return (profitability) is determined
by the quality improvement. The highest quality firm sets the limit price, based on the sec-
ond highest quality firm, determining the markup and profitability of the innovated good.
The public return (knowledge spillovers) is determined by the knowledge improvement. The
productivity of firms is determined by the average embodied knowledge of goods in the econ-
omy. However, embodied knowledge is non-exclusionary, preventing firms from profiting from
knowledge improvements. The distribution of quality and knowledge improvements differs
by firm types, leading to differences in the expected private and public returns to innovation.
The structure allows for both well-rewarded innovators where expected profitability matches
knowledge spillovers but also poorly-rewarded innovations where expected profitability does
not match knowledge spillovers. In contrast, standard innovative firm models (e.g., Klette
and Kortum, 2004; Lentz and Mortensen, 2008; Acemoglu et al., 2018; Akcigit and Kerr,
2018) tie public and private returns to the same outcome.

Long-run aggregate productivity growth is driven by the average knowledge spillovers from
innovations, which depends on both the innovation technologies of firms and the allocative
efficiency of R&D across firms. R&D becomes misallocated because firms invest according
to the expected profitability, and not the expected knowledge spillovers, of new innovations.
For example, R&D could be misallocated if low knowledge spillover firms are comparatively
profitable leading them to crowd out investment by high knowledge spillover firms. R&D
could also be misallocated if all firms are equally profitable but differ in expected knowledge
spillovers. Consequently, some dispersion in markups, and the resulting output misallocation,
may be desirable to improve the R&D allocation by better aligning private and public returns.
To characterize R&D misallocation, I follow Hsieh and Klenow (2009) by using the model
to construct an R&D wedge that indirectly describes the allocative efficiency of R&D by
comparing the the market and growth maximizing R&D allocations. This allows me to
describe the growth costs of R&D misallocation without taking a direct stance on the sources
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of R&D misallocation.
I use administrative data from the US patent and trademark office linked with firm-level

financial data to examine R&D misallocation empirically. The empirical relationship between
patenting and productivity growth (e.g., Berkes et al., 2022) makes patent-related measures
ideal for capturing knowledge spillovers in the model. The public returns to innovation are
measured as the average citations received on patents, adjusted for the likelihood patents in
different sectors and years are cited. Following the model, the private returns to innovation
are measured as the average sales-per-employee of firms. The results are robust to alternative
measures of profitability and private returns to innovation (Appendix B), including profit
margins and market-based measures of patent value. Using these measures, I find large
dispersion in the empirical firm-level R&D wedge—the measured gap between the public
and private returns to innovation—that is increasing over time.

The challenge with interpreting the dispersion in R&D wedges is that patenting is rela-
tively infrequent for most firms and so ex-ante differences in innovation outcomes are difficult
to characterize. I address this challenge by extending the model to incorporate patenting and
similar ex-ante differences in innovation outcomes. As an intermediate step, I construct firm
types based on innovation characteristics that are used to calibrate the model. Firms are
grouped based on innovation frequency and knowledge spillovers, measured by patenting rate
and average citations-per-patent, using a k-means clustering algorithm. Firms are divided
into three types: (1) low type (low frequency, low knowledge spillovers) firms; (2) high volume
firms, characterized by high patent counts; and (3) high knowledge firms, characterized by
high average citations-per-patent. The separation of high volume and high knowledge firms
departs from the common assumption that high-ability innovators perform better across
all dimensions (as in, for example, Acemoglu et al., 2018). Across firm types, knowledge
spillovers are highest for high knowledge firms (even after accounting for sector differences)
while profitability is highest for high volume firms. Additionally, the relative profitability
of high volume firms has increased over time while the relative knowledge spillovers have
remained relatively stable for all three types over time, implying a similar increase in R&D
wedge dispersion as with the firm-level measure.3

I calibrate the model to match characteristics of the low type, high volume, and high
knowledge firms in the late period (1991-2005) where R&D misallocation is more severe. I
allow for the possibility that firm types are misclassified in the construction of model moments
by simulating firm data and using inferred firm types, based on empirical cutoffs, rather
than the true firm types. Relative sales-per-employee and citations-per-patent discipline the

3High volume firms also tend to be larger firms in terms of sales and employment, consistent with the
rise in market power over this period (De Loecker et al., 2020; Cavenaile et al., 2020).
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profitability and knowledge spillovers by firm type while the relative patenting frequency
of firm types disciplines the product distribution. Research productivity and R&D wedges
point to growth gains from reallocating R&D from high volume to high knowledge firms.

I use the model to measure the potential growth gains from reallocating R&D to match
expected knowledge spillovers. Holding the distribution of firms and products fixed, reallo-
cating R&D increases growth by around 18% relative to its initial value. The gain is driven
by the increased R&D allocation to high knowledge firms. Growth further increases to al-
most double its initial value when the distribution of firms endogenously adjusts to the
new R&D allocations because high knowledge firms expand into new product lines, increas-
ing their R&D scale. This mechanism is similar to Bento and Restuccia (2017) and Ayerst
(2020) finding that distortions amplify the productivity cost of output misallocation because
productive firms are discouraged from investing in productivity improvements.

Finally, I use the model to quantify the costs of changing R&D misallocation over time. I
consider a simple experiment in which the expected profitability of firm types are adjusted
to match the early period (1976-1990) values in the data. The experiment holds R&D tech-
nologies and the stock of R&D resources fixed, such that the potential growth capabilities
of the benchmark economy and counterfactual economy are the same. Rising R&D misallo-
cation explains a drop in aggregate productivity growth of 11% between the early and late
periods, driven primarily by a sharp rise in the profitability of high volume firms. The result
explains just over one third of the decline in aggregate productivity growth and around one
sixth of the decline in research productivity over this period.4 The result is also robust to
re-calibrating the model to the early period (Appendix D.1).

Related literature. My paper relates to the literature building on Klette and Kortum
(2004) to examine innovator heterogeneity (Lentz and Mortensen, 2008; Acemoglu et al.,
2016a; Akcigit and Kerr, 2018; Garcia-Macia et al., 2019). In a closely related paper, Ace-
moglu et al. (2018) examine R&D misallocation across innovative firms with ex-ante dif-
ferences in research productivity. They focus on a different source of R&D misallocation in
which less innovative firms use R&D resources for fixed operating expenses, crowding out
investment by more innovative firms. Their measure reflects an empirical gap between firm
growth and R&D intensity but assumes that the (private and public) returns to innovating
are the same for all firms. In another closely related paper, Akcigit et al. (2019) examine

4The contribution of R&D misallocation to productivity growth is much larger than research productivity
because research productivity also accounts for inputs. Bloom et al. (2020) document a large increase in
effective researchers over this time period, explaining the differences in contribution.
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optimal R&D policies from a mechanism design perspective.5 In their setting, firms differ
in both research productivity and knowledge spillovers—although, knowledge spillovers are
tightly linked with profitability—while R&D inputs are not perfectly observable by the pol-
icymaker. In contrast, I examine R&D misallocation caused by mismatches between the
expected profitability and knowledge spillovers of innovations. These mismatches are impor-
tant because the firms that generate the largest knowledge spillovers are not necessarily the
most profitable firms.6 This channel of R&D misallocation leads to a quantitatively large
loss in growth and research productivity that has not previously been documented.

My paper also relates to the misallocation literature. Starting with Restuccia and Roger-
son (2008) and Hsieh and Klenow (2009), the literature documents large productivity costs
of misallocated factors of production. Edmond et al. (2015), Peters (2019) and MacKenzie
(2019) examine output misallocation arising from dispersion in markups across producers. I
examine R&D misallocation arising from ex-ante heterogeneity in profits that lowers aggre-
gate productivity growth. I find that some output misallocation may be beneficial to align
the private and public returns to innovating.7 The quantitative welfare cost of lower growth
due to R&D misallocation is an order of magnitude larger than from lower productivity due
to output misallocation.

Finally, my paper relates to the literature examining the productivity growth slowdown
in advanced economies (Gordon, 2016; Aghion et al., 2019a) and coinciding macroeconomic
trends, such as declining business dynamism, falling labor share and rising markups, among
others (e.g., Aghion et al., 2019b; Akcigit and Ates, 2019; Cavenaile et al., 2020; De Ridder,
2020; Peters and Walsh, 2021). I examine rising R&D misallocation as a novel explanation
for the productivity growth slowdown in which the increasing profit dispersion leads to larger
dispersion in the mismatches between the private and public returns to innovation. Rising
R&D misallocation explains growth falling by 11% relative to its initial value, correspond-
ing to over one third of the growth slowdown in the data. Rising R&D misallocation also
provides a micro-foundation for the declining research productivity documented by Bloom
et al. (2020), explaining around one sixth of the decline in research productivity. That is,

5See also papers examining the relationship between patent rewards and innovation (e.g., Cornelli and
Schankerman, 1999; Scotchmer, 1999).

6I find a similar pattern of misallocation as Acemoglu et al. (2018) in that R&D should be reallocated
from high volume firms (which tend to be older and less innovative) to high knowledge firms (younger and
more innovative). However, the comparatively high profitability of the high volume firms suggests that raising
incumbent taxation as suggested by Acemoglu et al. (2018) may be ineffective in practice.

7Chen et al. (2018) and Konig et al. (2018) examine R&D misreporting by Chinese firms. Additionally,
Konig et al. (2018) examine R&D misallocation as arising from output wedges, which has similar elements
to my analysis. My analysis differs by focusing on ex-ante firm heterogeneity in innovative capabilities. I
also show that eliminating output wedges would not be enough to eliminate R&D wedges and could lead to
higher R&D wedges when firms differ in innovative capabilities.
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ideas are becoming harder to find, in part, because the firms that generated those ideas in
the past generate relatively fewer ideas today.

Outline. The remainder of this paper is organized as follows. Section 2 introduces the
model and characterizes R&D misallocation. Section 3 presents the empirical analysis. Sec-
tion 4 calibrates the model and discusses the model’s fit. Section 5 uses the model to quantify
R&D misallocation across firms and time. Section 6 concludes.

2 Model

I develop a model to examine R&D misallocation. The structure follows Klette and Kortum
(2004) in which firms innovate on existing goods to become the new leading-edge producer.
Firms differ in their ex-ante type which determines the relative cost and expected returns of
R&D. The key feature of the model is that R&D returns are separated into private returns
that benefit only the innovating firm and public returns that benefit the entire economy.
R&D misallocation is caused by differences in the expected private and public returns.

2.1 Economic Environment

Time is continuous and indexed by t ∈ [0,∞). The economy is populated by an infinitely-
lived representative households with a unit mass of unskilled workers and a mass S of skilled
workers as well as an endogenously determined mass of firms.

Preferences and final good technology. The representative household has preferences

U([C(t)]) =
∫ ∞

0
e−ρt lnC(t)dt,

where ρ is the rate that the household discounts future utility. Unskilled workers provide
labor for the production of goods and skilled workers provide labor for R&D.8

The final good is produced using a continuum of intermediate goods, indexed by j ∈ [0, 1],
that differ in terms of quality qj and embodied knowledge kj. The model nests Klette and
Kortum (2004) for the case where the embodied knowledge equals quality, kj = qj. The final

8The fixed stock of skilled labor restricts total R&D investment. This implicitly abstracts from aggregate
underinvestment in R&D that would occur if R&D used output as an input (as in Romer, 1990). Atkeson
and Burstein (2018) find that the elasticity between aggregate R&D spending and growth is quantitatively
small across a wide range of parameter values.
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good production technology is given by

ln Y (t) =
∫ 1

0
ln
∑
f∈Fj

qjf
q̄(t)yjf (t)

 dj,
where yjf is the quantity of good j purchased from firm f and Fj is the set of potential
producers of good j. The inclusion of average quality q̄ = exp

∫ 1
0 ln qjdj indicates that the

relative quality of goods reallocates preferences without contributing to long-run growth.
Intermediate firms f produce multiple goods and innovate to add new goods to their

portfolio. Intermediate goods are produced using a linear technology yjf = k̄(t)`jf , where `j is
unskilled labor hired to produce good j. The average knowledge spillover k̄(t) = exp

∫
j ln kjdj

captures the spillover from previous innovations to the productivity of the economy (i.e.,
standing on the shoulders of giants). The separation of knowledge and quality allows for the
determinants of profit and productivity growth to be separated. Intuitively, the features of
an innovation that make it profitable, captured by qj, may or may not coincide with the
features that make it useful for long-run growth, captured by kj.

Innovation. Each firm f owns the blueprints to produce a set of goods Jf with qualities
{qj}j∈Jf and embodied knowledge {kj}j∈Jf . Additionally, firms differ in innovative types
a ∈ A which determine the expected returns and innovation costs. Firms stochastically
transition between types according to a Markov process where a type a firm becomes a type
a′ firm at rate γa,a′ , with transition matrix Γ = [γa,a′ ].

Firms invest in R&D to expand the number of goods that they produce. A firm f with
type af that operates nf product lines and hires Sf researchers produces new innovations at
rate Xaf (Sf , nf ) =

(
Sf/ψaf

)1/ζ
n

1−1/ζ
f , where ζ > 1 determines the elasticity of innovations

to skilled labor. This implies that the skilled labor per product line S/n is

nfsaf (x) = nfψafx
ζ , (1)

where x = X/n is the innovation rate per product line. The assumption that costs scale
linearly with the number of product lines implies that Gibrat’s law hold in equilibrium (as in
Klette and Kortum, 2004).9 Intuitively, this captures that knowledge gained from production
is useful for innovating. In order to receive the increased R&D scale firms must both produce
some output and pay a flow cost ws(t)Ba where the skilled wage ws(t) is used as a scaling

9In the quantitative analysis this assumption dictates the ability of large firms to absorb R&D resources.
Akcigit and Kerr (2018) provide evidence that Gibrat’s law does not hold in the data with larger firms having
lower research productivity. This mechanism would then amplify the degree of R&D misallocation I find as
the lower R&D scale of larger firms would increase the gains from reallocating resources to small firms.
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term for mathematical convenience.10

At rateX, the firm draws an innovation characterized by (λ, η), drawn from a type-specific
distribution Φa(λ, η). The value λ > 1 determines the quality q′j of the new variety of good j
that the innovating firm produces q′j = λqj, where qj is the quality of the currently produced
variety of good j. The value η > 1 determines the embodied knowledge k′j of the new variety
of good j that the firm produces k′j = ηkj, where kj is the embodied knowledge of the
currently produced good j. In equilibrium, the quality gap λ determines the profitability of
good j to the innovating firm while the knowledge spillover η determines the contribution of
the innovation to aggregate growth.

The separation of λ and η allows for flexible relationships between the knowledge spillovers
and profitability of innovations, in contrast to standard models (e.g., Klette and Kortum,
2004) where both returns depend on a single value. This allows for some innovations to be
useful sources of knowledge spillovers but unprofitable, as in the example of touchscreens in
the introduction, and other innovations to be profitable but have low knowledge spillovers,
as in the example of evergreening patents. Additionally, while λ and η are distinct, they
are not necessarily independent implying that the same features that may contribute to an
innovations profitability may also generate knowledge spillovers.

Entry and exit. New firms enter by innovating. Potential entrants hire se researchers to
create new varieties of goods at a rate xe = se/ψe. Successful entrants draw their innovative
type a from a distribution h̃a. After drawing its type, an entrant draws a number of entry
goods n̄a and unique innovation characteristics (λ, η) for each good from the distribution
Φa(λ, η). Firms enters at rate xe,a(n) = xeh̃a/n such that the expected rate at which a good
is produced by a type a entrant is equal to h̃axe. This implies that the resulting product
distribution is equivalent to the case where firms enter with a single product. Multi-product
entry helps with the calibration but does not affect the model results.

Firms exit the market when they no longer actively produce any goods. Firms lose goods
at rate δ, which is determined by the rate that other firms innovate. Let x̄a be the product-
weighted average innovation rate of type a firms. The creative destruction rate δ is

δ =
∑
a∈A

[
hax̄a + h̃axe

]
, (2)

10Assumption (A) sets the cost to be equal to the option value of R&D. Higher values of Ba would
imply that the leading-edge firm acts as a monopolist because other firms would never enter (similar to the
assumption in Akcigit and Kerr, 2018). On the other hand, lower values of Ba would imply that firms may
enter and produce near zero output in order to receive the benefit of increased R&D scale, which would be
mathematically intractable as the scale of R&D would increase exponentially over time.
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where ha is the share of goods produced by type a firms.

2.2 Market Structure and Equilibrium

I focus on the stationary Balanced Growth Path Equilibrium in which all variables and prices
grow at constant rates. I write variables without t where it does not create confusion.

2.2.1 Production and Prices

The final consumption good is taken as the numeraire. The household’s problem implies that
the Euler equation is Ċ/C = r − ρ.

Each firm manages a portfolio of goods that they potentially produce and competes with
other variety producers of good j in Bertrand competition. Because individual varieties of
good j are quality-adjusted perfect substitutes, the final good producer only purchases the
variety of good j with the lowest price-per-quality, pjf/qjf . The quality leader sets the limit
price for good j according to the quality gap between the leader’s (qjL) and follower’s (qjF )
goods, λj = qjL/qjF , and the marginal cost of production wu/k̄. The price of good j is then
pj = λjwu/k̄ where the markup is λj. Because demand for each good is Y , it follows that
firm-level output is y = Y/(λwu/k̄) and demand for unskilled labor is ` = Y/λwu.

Product and markup distribution. The product distribution ha describes the distri-
bution of the firm types across the producers of each good. The law of motion is

ḣa = xeh̃a + xaha − δha +
∑
a′∈A

γa′,aha′ −
∑
a′∈A

γa,a′ha, (3)

where ḣa = 0 in the stationary equilibrium. The first two terms are the probability a type a
good is added through entry or incumbent innovation; the third term is the probability that
a type a firm loses a good; and the fourth and fifth term are the inflow and outflow of type a
goods based on firm transitions across types. The related firm size n and type a distribution
is described in Appendix A.1.

The markup distribution κ(λ) describes the distribution of markups λj = qjL/qjF across
goods. The law of motion is

κ̇(λ) = −δκ(λ) +
∑
a∈A

[haxa + h̃axe]
∫
η

Φa(λ, dη), (4)

where κ̇(λ) = 0 in the stationary equilibrium. The first term is the rate at which firms with
quality lead less than or equal to λ are replaced by an innovating firm. The second term is
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the arrival rate of innovations with quality leads less than λ, which depends on the product
distribution, the innovation rates, and the marginal distribution of quality improvement.

Allocations, prices, and output. The unskilled labor market clearing condition requires
that the total mass of unskilled labor is hired by firms, 1 =

∫
j `jdj. Following the distribution

of markups κ(λ) and demand for unskilled labor, the wage rate that clears the market is

wu = k̄ exp
(∫

λ
ln λ−1κ(dλ)

)
.

The firm-level prices and allocations can then be written as

p(λ) = λ
∫
λ

ln λ−1κ(dλ), y(λ) = k̄
λ−1∫

λ λ
−1κ(dλ) , `(λ) = λ−1∫

λ λ
−1κ(dλ) . (5)

The prices and allocation depend on the distributions of markups λ and the average stock
of embodied knowledge k̄ in the economy. The expressions also imply that firm-level sales-
per-employee are p(λ)y(λ)/`(λ) ∝ λ, which I use in the calibration section to estimates the
distribution of private returns λ.

Aggregate output can be used for either consumption or the fixed cost of firm operations,
Y = C + ws

∑
aBaha. Aggregate output is equal to

Y = χk̄, (6)

where χ = exp(
∫
λ ln λ−1κ(dλ))/

∫
λ λ
−1
i κ(dλ) is an aggregate term that captures output misal-

location driven by markup dispersion (as in, Peters, 2019). The term χ will be less than one
when there is markup dispersion and equal to one when all firms charge the same markup.

The expression for output in (6) shows that output (and consequently productivity)
growth depends only on growth in average knowledge k̄. In this regard, the production func-
tion disentangles the private benefits that firms receive from innovating from the generated
knowledge spillovers.11 However, given that there are no restrictions on the joint distribution
Φa(λ, η) of quality improvements λ and knowledge spillovers η, this should not be taken as
placing restrictions on what drives growth. Intuitively, the same features of an innovation
that cause it to be profitable may also generate knowledge spillovers.

11Appendix A.3 considers a more generalized CES production for the final consumption good. The alter-
native production function creates a link between knowledge spillovers and profitability as lower cost (high
kj) firms can charge lower prices to increase market share. However, the relative importance of this channel
on aggregate productivity growth is quantitatively small.
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2.2.2 Research and Development

Innovation problem. The profitability of a good with markup λ is Π(λ) = [1− λ−1]Y =
πY where π = 1 − λ−1 is a scaled measure of profitability. Profits depend on the quality
improvement of the innovation λ and not the embodied knowledge improvements of the
innovation η or average knowledge k̄.

To simplify notation, I refer to firms by their type a ∈ A, the profitability of actively
produced goods [πi]ni=1, and the cardinality of this set n. The dynamic problem of firms is to
hire skilled labor to maximize firm value by adding new goods. The value of a firm is

rVa([πi]ni=1, n)−V̇a([πi]ni=1, n) =

max
x

n∑
i′=1

πi′Y − wsBa + δ [Va([πi]ni=1/{πi′}, n− 1)− Va([πi]ni=1, n)]
+x [EaVa([πi]ni=1 ∪ {π̃}, n+ 1)− Va([πi]ni=1, n)]− wssa(x)


+
∑
a′∈A

γa,a′ [Va′([πi]ni=1, n)− Va([πi]ni=1, n)]

, (7)

where ws is the wage of skilled labor. A “/” indicates a set without the following element
and a “∪” indicates a set with the following element added. The value of a firm depends on
the expected profits of its current portfolio of goods (first line), the expected present value
of innovation (second line), and the expected value from changing types (third line).

The entry problem is given by

Ve = max
xe

xe
∑
a∈A

[
h̃a
n̄a

Ea
[
V ([π̃i]n̄ai=1, n̄a)

]
− Ve

]
− wsψese(xe). (8)

The first term is the probability of successfully drawing an innovation xe multiplied by the
expected net value of entry. The second term is the cost of generating a stream of innovations
xe. In equilibrium the entry condition implies that the value Ve of being an entrant is non-
positive and equal to zero whenever entry is positive, xe > 0.

Skilled labor is used for incumbent and entrant R&D. The skilled labor market clearing
requires

S = ψexe +
∑
a

haψax
ζ
a.

Growth rate. Along the balanced growth path, the distribution of markups is stationary
implying that output growth is driven by growth in the average knowledge stock k̄. The
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growth rate of knowledge k̄ is given by

g = d ln k̄(t)
dt

=
∑
a∈A

[haxa + h̃axe] ln η̄a. (9)

where ln η̄a =
∫
η

∫
λ ln ηΦa(dλ, dη). The growth rate depends on: (i) the average quality of

innovations η̄a; and (ii) the frequency with which these ideas occur haxa + h̃axe. In a model
without type heterogeneity, the growth rate reduces to the average step size η multiplied
by the creative destruction rate δ. The addition of firm heterogeneity implies an additional
factor: (iii) the allocation of innovative activities across firm types. Growth is then higher
when high expected knowledge spillovers (high η̄a) firms invest relatively more. Proposition 1
shows that the relative investment depends on the expected profitability of firm innovations.

2.2.3 BGP Equilibrium

Definition 1. A balanced growth path equilibrium consists of the values

{C, Y, wu, ws, r, p(λ), y(λ), `(λ), xe, xa, ha, g, δ, κ}

for a ∈ A, λ > 1, t ∈ [0,∞), such that: (i) consumption C maximizes household utility; (ii)
the price p(λ), output y(λ), and labor `(λ) maximize firm profits for each quality gap λ; (ii)
the innovation rate xa maximizes firm value for each type a; (iii) firm entry xe maximizes
entrant value; (iv) the stationary product and markup distributions follow (3) and (4) for
ḣa = κ̇(λ) = 0; (v) the growth rate g and creative destruction rate δ are given by (9) and
(2); (vi) the final and intermediate goods markets clear; (vii) the unskilled and skilled labor
markets clear.

Characterization. I focus on the positive entry case and further assume that

Ba = ψa(ζ − 1)
 ψeπ̄a

ψaζ
[∑

a′ π̄a′h̃a′
]


ζ
ζ−1

, (A)

where π̄a =
∫
η

∫
λ [1− λ−1] Φa(dλ, dη) is the expected profitability of a new good for a type a

firm. The assumption sets the fixed costs paid by firms to the option value of innovations.
Section 4.5 shows this assumption has a quantitatively small impact on the results.

The equilibrium wage rate of skilled labor normalized by output is denoted by ω = ws/Y .
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Under the above assumption, the normalized wage rate is

ω = 1
ψe(ρ+ δ)

∑
a

π̄ah̃a. (10)

The wage rate depends on the expected profitability of newly created firms ∑a π̄ah̃a, the
adjusted discount rate ρ+ δ, and the entry technology ψe.

Proposition 1 characterizes the solution to the firm’s problem.

Proposition 1. Assume that entry is positive and (A) holds, the firm’s problem is solved by
the value function

Va([πi]ni=1, n) =
n∑

i′=1

[
πi′

ρ+ δ

]
Y (t) (11)

and the innovation rate

xa =
 ψeπ̄a

ψaζ
[∑

a′ π̄a′h̃a′
]
 1
ζ−1

, (12)

where π̄a =
∫
η

∫
λ[1− λ−1]Φa(dλ, dη) is the expected profits of a new product.

The values in Proposition 1 and the skilled labor wage rate in (10) express the equilibrium
solutions in terms of the creative destruction rate δ, which is a function of the product
distribution ha and entry rate xe. The product distribution is equal to

h = [diag(1 + δ − xa)− Γ′]−1
xeh̃, (13)

where Γ′ is the transpose of the transition matrix Γ and diag(1 + δ − xa) is a matrix with
diagonal elements 1+δ−xa. The product distribution depends on the entry probability xeh̃a
scaled by the relative innovation rates xa − δ and the relative transition dynamics Γ′ − 1.
The entry rate in equilibrium solves

xe = S

ψe
− 1
ψe

∑
a

ψax
ζ
aha,

where note that ha depends on the entry rate through δ = xe +∑
a xaha.

2.3 R&D Misallocation

The growth rate in (9) highlights the main tension in the model. The R&D allocation de-
pends on the expected profitability of innovations π̄a while the contribution to growth of
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R&D resources depends on the expected knowledge spillovers of innovations ln η̄a. R&D is
misallocated if there exists a feasible R&D allocation that could increase growth (Definition
2). I focus on the growth maximizing R&D allocation as the benchmark—rather than the
socially optimal R&D allocation—because this allocation is more relevant to examining the
impact on aggregate productivity growth.12 Additionally, focusing on the growth maximizing
R&D allocation allows me to follow the output misallocation literature.13

Definition 2. Define growth g(s; h) = ∑
a∈A

[
haxa + h̃axe

]
ln η̄a for skilled labor allocation

s = [sa]a∈A ∪ {se} and product distribution h = [ha]a∈A. For a given h, R&D is misallocated
if there exists š ≥ 0 such that g(š; h) > g(s; h) and S ≥ še +∑

a∈A šaha.

The growth maximizing allocation of skilled labor is

s∗a = ψa

 ψe ln η̄a
ζψa

[∑
a′ ln η̄a′h̃a′

]


ζ
ζ−1

(14)

and s∗e = S −∑a∈A s
∗
aha. The expression replaces the expected private return π̄a from the

market allocation in (12) with the expected public return ln η̄a. I define the R&D wedge
between the market and growth maximizing allocations as

θa = sa
s∗a

=
[

π̄a/
∑
a′ π̄a′h̃a′

ln η̄a/
∑
a′ ln η̄a′h̃a′

] ζ
ζ−1

= τa

[∑
a′ ln η̄a′h̃a′∑
a′ π̄a′h̃a′

] ζ
ζ−1

. (15)

The wedge measures how far a firm is from the allocation of skilled labor that would max-
imize the growth rate. Values of θa above one indicate that a firm is allocated too much
R&D resources in the market allocation while values below one indicate a firm is allocated
too few R&D resources. Growth can be increased by reallocating resources from firms with
θa > 1 to firms with θa < 1. The value of τa captures the firm-specific component of the
R&D wedge whereas [∑a′ ln η̄a′h̃a′/

∑
a′ π̄a′h̃a′ ]ζ/ζ−1 captures the general equilibrium compo-

nent that depends on the skilled labor wage rate. The wedge τa is directly comparable to the
output wedges in Hsieh and Klenow (2009).

Proposition 2 shows how the R&D wedge affects the market allocation growth rate relative
to the maximum obtainable growth rate.

Proposition 2. Assume entry is positive and (A) holds, for a given product distribution ha:
12Appendix D.3 examines the Social Planner’s allocation, which accounts for the effect of the R&D allo-

cation on output misallocation (χ) and on the future product distribution ha.
13The growth maximizing R&D allocation also does not rely on model-specific assumption on households

preferences or the accumulation of product lines. In this regard, the growth maximizing allocation implied
by (15) is consistent with a broader class of models.
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1. the maximum obtainable growth rate is equal to:

g∗ =
[
S

ψe

∑
a

h̃a ln η̄a
] [

1 +
∑
a

ha
s∗a
S

(ζ − 1)
]

; (16)

2. The market allocation growth rate is equal to:

g =
1 +∑

a ha
s∗a
S

(ζθ
1
ζ
a − θa)

1 +∑
a ha

s∗a
S

(ζ − 1)︸ ︷︷ ︸
Allocative Efficiency

× g∗︸︷︷︸
Max. Growth

; (17)

3. Growth g is falling in the value of |θa − 1| for any type a;

4. g = g∗ if and only if π̄a = ν ln η̄a for all a and some constant ν > 0.

The market growth rate g in (17) is equal to the allocative efficiency of R&D multiplied
by the maximum growth rate g∗. The maximum growth rate depends on the innovation
technologies, captured by R&D costs (ψa, ψe) and average knowledge spillovers ln η̄a. The
insight from (17) is that the decline in research productivity (as documented by Bloom et al.,
2020) may be driven by either a decline in either innovation technologies or the allocative
efficiency of R&D. The proposition also highlights that some output misallocation from
markup dispersion may be desirable to improve the allocative efficiency of R&D. Specifically,
the fourth part of the proposition states that growth is maximized only when there is markup
dispersion from equating expected profitability and knowledge spillovers of innovations.

Growth in (17) highlights the key moments needed to quantify R&D misallocation: (i)
the distribution of products ha; (ii) the expected profitability of innovations π̄a; and (iii) the
average knowledge spillovers generated by innovations ln η̄a.

3 Empirical Analysis

The model highlights R&D misallocation caused by mismatches between expected private
and public returns to innovation. I use matched patent and firm-level financial data to
examine the extent of this mismatch empirically. I also construct innovative firm types that
are used in the model calibration.

3.1 Data

NBER USPTO Utility Patent Grant Database. The main data source is the patent
and citation dataset from the NBER Patent Database (Hall et al., 2001). I restrict to patents
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issued by US non-governmental organizations, which I refer to as firms. Citations are adjusted
using Hall et al. (2001) weights to account for between-period and between-sector differences
in the likelihood to be cited. I restrict the sample to innovative firms that issue three or
more patent over the entire sample and drop the final year (2006) in the dataset. I winsorize
citations and number of patents by firms at the top 1% to limit the influence of outliers.

Compustat. I use the Compustat database to connect patents with firm-level financial
data. I drop firms that experience major mergers or acquisitions in any period and firm-year
observations with negative sales.14 I further restrict to firms that have an innovative type
constructed using the patent data (discussed in Section 3.3).15 The resulting sample contains
14,349 firm-year observations by 1,857 unique firms covering 285,941 patents.16 I winsorize
variables at the top and bottom 2% in each year to limit outliers.

Compustat, and the joint patent data, has been widely used to study aggregate trends
(some recent related examples include De Loecker et al., 2020; Cavenaile et al., 2020; De Rid-
der, 2020). Compustat firms cover around 31% of employment and 41% of sales (Asker et al.,
2015), firms from a wide breadth of sectors, and over one quarter of total patents in the final
dataset. That said, Compustat data is comprised of publicly traded firms raising concerns
about representativeness. With this in mind, I focus the use of Compustat data to mea-
sures relative firm profitability, where alternative measures are unavailable, and use the
broader-coverage patent data to construct other moments. Additionally, I control for granu-
lar sector-level fixed effects in the construction of calibration moments to limit the influence
of sectoral representation. Other constructed moments (R&D intensity and average profit
margins) fall in line with other datasets (e.g., Acemoglu et al., 2018; Akcigit and Kerr, 2018).

3.2 The Empirical R&D Wedge Distribution

As a starting point, I follow Hsieh and Klenow (2009) by measuring the extent of R&D
misallocation using dispersion in firm-level R&D wedges. This is equivalent to assuming
that each firm f represents a unique type a. While firm-level measures likely capture many
idiosyncratic factors (e.g., measurement error, ex-post heterogeneity in innovation outcomes),
relative dispersion in R&D wedges is useful for comparing differences in R&D misallocation

14Defined as firms that experience a acquisition or merger valued at more than 5% of the firm’s total value
in any period of the sample. This is done to prevent issues where a firms patent portfolio or profitability
reflects acquisitions.

15Including the set of non-innovative firms as a fourth type does not substantially change the results.
16The final data only includes firms with a recorded firm type (discussed in Section 3.3), which requires

that firms patent over five-year partitions of the data. For example, a firm with data from 1970 to 1990 that
applies for two patents in 1980 and 1981 counts as five observations.
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between samples. Given this, I divide the sample into an early (1976-1990) and late (1991-
2005) period to assess changes in R&D misallocation over time.

The R&D wedge in (15) depends on both a firm-specific component τa and a general
equilibrium component. The latter can be ignored since it does not affect dispersion in R&D
wedges. The firm-specific component of the R&D wedge is

τf,t =
[

Expected Profitabilityf,t
Expected Knowledge Spilloversf,t

] ζ
ζ−1

≈
[

ln Sales-per-Employeef,t
Citations-per-Patentf,t

] ζ
ζ−1

. (18)

In the model, knowledge spillovers ln η determine the contribution of firm innovations to
long-run aggregate productivity growth. Patents are ideal to measure knowledge spillovers
because of their empirical relationship with long-run productivity growth (see, for example,
Berkes et al., 2022). I measure knowledge spillovers in the data using average firm-level
citations-per-patent. Citations are a natural candidate for knowledge spillovers because they
capture the usefulness of the innovation to future innovations. In the model, the profitability
of a good j can be approximated as πj = (1 − λ−1

j ) ≈ ln λj where λj is proportional to
sales-per-employee, which I use as the empirical measure of firm profitability. Each variable
(sales, employees, citations, patents) is scaled by its mean value each year to remove time
trends as both patenting and profitability grow over this period (Kortum and Lerner, 1999;
De Loecker et al., 2020).17 I also average firm-level variables over consecutive five-year periods
(e.g., 1976-1980, 1981-1985) to reduce measurement error and trim the top and bottom 2%
of firms based on measured wedges τ̂f,t to reduce the influence of outliers.18 Figure 1 plots
the wedge distribution for the early and late periods.

There is a substantial mismatch between the firm-level private and public returns to
innovation indicating that firms that produce more highly cited patents are not necessarily
more profitable. On its own, the dispersion in the R&D wedges indicates that growth could
be increased by aligning the private and public returns. As mentioned, the dispersion in R&D
wedges could be driven, in part, by measurement error (e.g., high knowledge spillover patents
receiving low citations) or other idiosyncratic factors. The trend in the dispersion of the R&D
wedges over time does not suffer from this problem since these underlying factors are present
in both periods. The dispersion in R&D wedges has increased substantially between the early
and late periods. Appendix B.4 shows that the trend is robust to alternative measures of
profitability and constructing wedges as citations divided by total R&D expenditure to follow

17Like with output misallocation, the dispersion in variables leads to R&D misallocation. Removing time
trends avoids including between-year dispersion in variables in the measure of R&D misallocation.

18Dispersion of wedges is also increasing over time if variables are averaged over the full early and late
periods or if dispersion in wedges is examined at the five-year sub-period level.
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Figure 1: R&D Wedge Distribution by Period
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Notes: The figure plots the histogram of the firm-level wedge in (18) over the early (1976-1990) and
late (1991-2005) periods. The top and bottom two percent of observations, based on the firm-level
wedge, are dropped in each period. The mean of log wedges is normalized to zero in each period.

Hsieh and Klenow (2009).19

3.3 Innovator Types

The firm-level R&D wedges in Figure 1 point to large and rising R&D misallocation but
suffer from measurement issues. I use the model to address this issue by building similar
measurement issues into the model. I estimate the model using firm types a ∈ A constructed
using firms with similar innovation characteristics. The remainder of the section discusses the
construction of firm types and shows that these firm types capture similar dynamics as the
firm-level R&D wedges. In the next section, I extend the model to include patenting such that
the calibrated model matches the key features of the data, including ex-post heterogeneity
in innovation outcomes and the possibility that firm types are misclassified.

I construct firm types using all US firms in the patent database that patent at least three
times over the sample. Firm-level variables are averaged over consecutive five-year periods
(e.g., 1976-1980, 1981-1985) to provide sufficient time to observe patenting characteristics
while still allowing for entry, exit, and transitions between firm types. The final sample
includes 83,829 firm-period observations that account for 732,141 patents.

Firms are grouped using a k-means clustering algorithm based on two patenting character-
19All three R&D wedges are also positively correlated suggesting the same underlying sources of R&D

misallocation. I focus on (18), rather than these alternative measures, because it directly corresponds to the
channel described in the model and R&D expenditures appears to be poorly measured in the data, with
many firms reporting zero R&D expenditure despite high patenting frequently.
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istics.20 The first characteristic is the firm’s average citations-per-patent since this captures
knowledge spillovers η in the model. The second characteristic is patents-per-period since
innovation frequency is closely related to the costs and private returns of innovations, as in
(12). Additionally, the product of the two variables is citation-weighted patents, a common
measure of total innovation output (Hall et al., 2001). In this respect, focusing on these
two characteristics can be thought of as delving into the implicit heterogeneity within this
more traditional measure of innovation output. The analysis implicitly assumes that the two
innovation characteristics are different, such that a firm that produces many low-citation
patents and a firm that produces few high-citation patents are different.

Figure 2 plots the innovation characteristics for a 10% sample of firm-period observations.
Highly innovative firms tend to excel in only one of the two dimensions. That is, firms either
over-perform in citations-per-patent firms or in patents-per-period. In contrast, the litera-
ture generally treats innovation as unidimensional focusing on quality-adjusted measures of
patents-per-period. Returning to the example, the typical approach would imply that a firm
that produces many low-citation patents is fundamentally the same as a firm that produces
a few high-citation patents. Figure 2 also reports the constructed firm types.

Figure 2: Firm Types
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Notes: The figure plots a 10% sample of firm-period observations groups by type. Firm types
are constructed using a k-means algorithm with three total types.

I refer to the three types as low types (for low innovation frequency, low knowledge
spillovers), high volume, and high knowledge firms. Table 1 reports summary statistics by
firm type. High volume and high knowledge firms are better innovators with both types out-
performing low types in at least one dimension. Additionally, both high types perform better

20Define the vector of innovation characteristic as zf for a firm-period observation. The k-means clustering
algorithm sets groups Fi=1,2,...,k to minimize

∑k
i=1
∑
f∈Fi

||zf − µi||2 where µi is the average of zf for Fi.
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in the frequency that patents are above the 90th percentile of citations in the current year
(freq. >90p) and the frequency that patents receive zero citations (freq. 0 cites). The polar-
ization of the high volume and high knowledge types shows a contrast with unidimensional
measures of innovative ability.21 Appendix B.1 shows that allowing for more granular types
results in types that lie between the low type and high volume or high knowledge firms.22

Table 1: Descriptive Statistics on Firm Types

obs cites/pat. pat/period freq. >90p freq. 0 cites
Low Type 74187.0 10.5 5.5 4.7 14.1
High Vol. 1923.0 15.4 147.6 9.5 13.8
High Know. 7719.0 55.2 5.5 55.6 0.9

A concern is that the types reflect ex-post, rather than ex-ante, heterogeneity in patenting
outcomes. I correct for this in the model calibration by allowing similar sources of ex-post
heterogeneity and firm type misclassification. Appendix C.3 shows that the model calibrated
to a single firm type is unable to replicate the type distribution with ex-post heterogeneity
alone. The single-type model generates only around 1% of high volume innovations and under
one-third of high knowledge innovations in Table 1.

3.4 Private and Public Returns by Firm Type

Figure 1 shows that there is substantial dispersion in R&D wedges and that this dispersion
has increased over time. I use the linked Compustat data to examine whether the constructed
firm types capture these trends. I regress firm-level measures of private and public returns
to innovation on firm type a ∈ {low type, high vol, high know} indicators. Table 2 reports
the results. I divide the results between the early (1976-1990) and late (1990-2005) periods
to examine how between-type differences change over time.

For the public returns, the relative ranking of firms is the same as before. High knowledge
firms produce the most highly cited patents, followed by high volume firms and then low type
firms. This is almost mechanical given the construction of the firm types, but it is reassuring
that the ranking holds after controlling for sector and year fixed effects. The results also
show that the relative differences in citations remain stable over time.

For the private returns, high volume firms are the most profitable while high knowledge
firms are the least profitable, at least in the late period. This ranking is consistent with

21Appendix B.2 compares the three firm types with types constructed using only citations-per-period as
an aggregate measure of knowledge output. The analysis shows that the group of high knowledge firms tends
to be missed while the group of high volume firms tends to be classified as high types in this new grouping.

22For example, moving to five types adds mid volume and mid knowledge types to the three baseline types.
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Table 2: Private and Public Returns by Firm Type

Early Period (1976-1990) Late Period (1991-2005)
(1) (2) (3) (4)

ln(sales/emp) cites/pat ln(sales/emp) cites/pat
High Vol. 0.0257 0.234** 0.413*** 0.358***

(0.0496) (0.0959) (0.0856) (0.0854)
High Know. -0.0198 1.116*** -0.0869 1.167***

(0.0496) (0.0560) (0.0648) (0.0481)
Year FE Yes Yes Yes Yes
Sector FE Yes Yes Yes Yes
Observations 6883 4440 7459 5228

Notes: * p<0.10, ** p<0.05, *** p<0.01. Robust standard errors clustered at the firm level
are reported in parentheses. All regressions include year and sector (four-digit SIC) fixed
effects. Columns (2) and (4) are estimated using PPML. Columns (2) and (4) have fewer
observations than (1) and (3) because not all firm-year observations have patent applications.

the idea that higher expected profitability drives the innovation frequency (as measured
by patents-per-period) of high volume firms. Unlike with public returns, there is a sharp
widening of cross-type differences between the periods, with private returns being more
egalitarian in the early period. The results are robust to alternative measures of profitability
(Appendix B.3.3) and to private and public returns based on the stock market valuations of
patents constructed by Kogan et al. (2015) (Appendix B.3.4).

High volume firms are also substantially larger than other firms (Appendix B.3.2). The
rise in profitability of high volume firms may be related to other trends about large firms,
such as rising market power (e.g., Cavenaile et al., 2020), patent protection (e.g., Akcigit
and Ates, 2019) and intangible investment (e.g., De Ridder, 2020).

4 Calibration and Measurement

The empirical evidence points to substantial and rising R&D misallocation. I calibrate the
model to the late period (1991-2005) where R&D misallocation is most severe. Appendix
D.1 compares the baseline model with the model calibrated to the early period.
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4.1 Patents and Citations

Innovation in the data is described by patent outcomes. I extend the model to explicitly
describe the mapping from innovations and knowledge spillovers to patenting and citations.
The extension allows me to construct model moments directly comparable to data moments.

Firms produce patents at a proportional rate to innovations, such that a firm that in-
novates at rate xa produces patents at Poisson rate Λxa for some constant Λ common to
all firm types. In general, more innovative firms patent more, but an innovation does not
equate to an exact number of patents. Intuitively, this captures that an innovation could be,
for example, a new drug with a single patent or a new car with three patents on the GPS,
engine, and electronic control system.

Patent citations are determined by

citations =

0 with probability α
c̃ with probability 1− α

, (19)

where c̃ ∼ lognormal(µa, σ2). The probability α allows for patents to receive zero citations, as
in the data, while the values of µa and σ determine the distribution of citations conditional
on receiving positive citations. Knowledge spillovers ln η̄a are proportional to average patent
citations, such that the expected knowledge spillovers of an innovation are ln η̄a = ν(1−α)∗
exp(µa+σ2/2) for constant ν > 0. On average, higher knowledge spillover firms receive more
citations on patents, but this may not be the case for individual patents.

The randomness in patent and citation outcomes allows for ex-post heterogeneity in firm
outcomes. For example, a low type firm may, through chance, produce many patents and be
classified as a high volume firm or produce several highly-cited patents and be classified as a
high knowledge firm. This is important for the calibration because it implies that the model
captures the same ex-post heterogeneity present in the data.

4.2 Calibration Strategy

The calibration determines the parameters {ρ, ζ, S}; the type-specific innovation costs ψa;
innovation distribution Φa(λ, η); transition matrix Γ; entry distribution h̃a; and the patenting
parameters {α, µa, σ, ν,Λ}. The types a ∈ A are set to match the low type firms (a = L),
high volume firms (a = V ) and high knowledge firms (a = K) from Section 3.

Externally calibrated parameters. The discount rate is set to ρ = 0.02 which implies
an interest rate of close to 4% along with the calibrated growth rate. The curvature of the
cost function is set to ζ = 2 consistent with the value found by Acemoglu et al. (2018). The
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mass of skilled labor is set to S = 0.17 consistent with the fraction of workers employed in
a research capacity in the United States reported by Acemoglu et al. (2018).

To reduce the computational burden of the calibration, I set two sets of moments based
on closely related empirical counterparts. First, the number of entry products is set to two
for both the low type and high knowledge firms and to 30 for the high volume firms, which
is consistent with relative firm sizes (see Table 5). As discussed in Section 2, the number of
entry products does not affect the equilibrium product distribution or R&D misallocation.
Second, the transition matrix is taken to be the empirical transition matrix,23 such that

Γ =


98.3 0.3 1.4
4.5 95.2 0.3
17.3 0.7 82.0

 . (20)

Appendix C.2 shows that the model-implied transition matrix between observed types is
similar to the empirical transition matrix suggesting that this assumption reasonably ap-
proximates the data. The model underestimates the persistence of high knowledge firms,
which lowers the potential gains from R&D reallocation implying more conservative results.
The transition matrix in (20) indicates that high volume and high knowledge firms transition
to low type firms over time, consistent with the decline in research productivity of older firms
and over time documented by Acemoglu et al. (2018) and Bloom et al. (2020).24

The probability that patents receives zero citations is set to α = 12.8% and the standard
deviation of citations is set to σ = 0.93 based on Table 1. Firms draw ideas (λ, η) from
a type-specific distribution where knowledge spillovers η depend on citations as described
previously. Private returns are drawn from a degenerate distribution with value λ̄a, which is
without loss of generality since firms are risk neutral.

Internally calibrated parameters. The remaining 14 parameters {ψa, λ̄a, h̃a, ψe, µa, ν,Λ}
are jointly chosen to match the moments in Table 3. Ten of the moments describe type-specific
outcomes that discipline the extent of cross-type differences, including R&D misallocation.
The remaining four moments discipline aggregate characteristics of the economy and are
calculated analytically. Given that ν only affects the aggregate growth rate, it is chosen after
the other parameters to match this moment.

23Specifically, Γ5 equals the five-year transitions across types found in the data.
24High volume firms tend to be older and high knowledge firms tend to be younger than low type firms.

However, I do not find evidence of a lifecycle that accounts for transitions from high knowledge to high
volume firms over time. A clear indication of this is that high volume firms are more likely to have previously
been low type firms than high knowledge firms.
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Table 3: Model Moments and Data Targets

Moment Data Model
Firm Share (%) (88.5 , 2.30 , 9.20) (88.4 , 2.29 , 9.31)
Citations-per-Patent (10.5 , 15.4 , 55.2) (10.6 , 15.3 , 56.4)
Patent Count (5.5 , 147.6 , 5.5) (5.5 , 147.1 , 5.4)
Rel log(Sales-per-Emp) (0.00 , 0.41 , −0.09) (0.00 , 0.38 , −0.11)

R&D Intensity (%) 6.9 7.2
Avg Profit Margin (%) 15.3 15.4
Entry Rate (%) 7.4 7.4
Growth Rate (%) 1.63 1.63

Notes: Moments are ordered corresponding to low type, high volume, and high knowledge firm types.
Type-specific moments are calculated using recorded types from data generated from a simulation of
30,000 firms (described in Section 4.2).

Simulation data. Type-specific model moments in Table 3 are based on simulation data
of 30,000 firms over a five-year period where firms are weighted based on the equilibrium
share of firm types ma (defined in Appendix A.1).25 The first-year distribution of firms is
initialized using the BGP equilibrium distribution of firms across types a and the number of
product lines n.26 Firms accumulate product lines at rate xan, lose products at rate δn, and
transition between types based on the transition matrix Γ. I calculate model moments using
the observed types â of firms, which may differ from true types a, based on patent outcomes
over the simulation. Firms that patent more than 76 times are recorded as high volume firms
while firms that receives at least an average of 32.8 citations-per-patent are recorded as high
knowledge firms, where the cutoffs are the lower bound of high knowledge and high volume
firms in the data.

The simulation allows moments to be calculated consistent with the data. Importantly,
the simulation allows for misclassification such that observed firms types, denoted by â,
may differ from true firm types, denoted by a. Observed types are based on firm outcomes
(and cutoffs) while true types determine firm parameters. Allowing for the same sources of
misclassification in the simulated data as in the data corrects for systematic biases in the
parameters. For example, some low type firms may be highly cited and, incorrectly, recorded

25Specifically, 10,000 firms of each type are simulated and moments are calculated assuming that a firm
has population weight ma based on initial firm types. This reduces the computational burden by allowing
for relatively more high volume and high knowledge firms to be simulated and ensures that moments are
calculated using the correct population weight.

26To reduce computational cost, I assume that goods produced by firms in the initial year of the simulation
have private return λa for the firm’s initial type a. This implies an upward bias on the estimate of λL given
that some low type firms were previously high volume firms. I also assume that all firms produce at least
one patent in the first period of the simulation.
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as high knowledge firms. If misclassification is not taken into account then this example
implies larger parameter differences between low type and high knowledge firms since the
model would incorrectly attribute the observed differences entirely to underlying parameters.
Building misclassification into the model allows for some of the observed differences between
types to be attributed to misclassification. While all types of misclassification occur in the
simulation, the most common is for high volume and high knowledge firms to be recorded
as low type firms.27

4.3 Calibration Moments

I discuss the construction of the model and data moments. While the parameters are highly
interdependent and chosen jointly, I also discuss closely related parameters to each moment
for intuition. Appendix C.1 provides additional details on the identification and the sensi-
tivity of the model moments with respect to the calibrated parameters.

Firm Share. The model moment is the share of firms with observed type â, which is based
on firm patenting and citation outcomes. Table 1 reports the data moment. The moment is
related to the the entry probabilities h̃a and the survival rate of firms, which depends on
R&D costs ψa and returns λ̄a through the innovation rates xa and creative destruction rate.

Citations-per-Patent. For each firm, citations-per-patent is constructed as the total
number of citations received on all of the firm’s patents divided by the firm’s patent count.
The model moment is the average value across observed type â firms. Table 1 reports the
data moment. The moment is related to the type-specific citation mean µa and, consequently,
the type-specific knowledge spillovers η̄a.

Patent Count. The model moment is constructed as the average total patent count of
each observed type â firm. The data moment is from Table 1. The moment is closely related
to the patent-innovation ratio Λ and the innovation rate xa, which depends on innovation
costs ψa and the private returns to innovation λ̄a.

Rel log(Sales-per-Emp). For each firm, sales-per-employee is calculated as the total sales
divided by total employee-years hired by the firm over the simulation. The model moment
is the average log value for observed type â firms subtract the value for observed low type

27Around 7% of firms are misclassified in the data with around equal mass of high volume and high
knowledge firms being classified as low type firms.
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firms. The data moment is from Table 2. The value is related to the type-specific private
return λ̄a, since pjyj/`j ∝ λj for good j.

R&D Intensity. The model moment is the average value of R&D spending to sales across
firms, ω[∑a sama + se] where ma is the type a firm share (defined in Appendix A.1). The
data moment is the median value of R&D expenditures to sale for firms that report R&D
spending less than total sales. The moment is related to the equilibrium wage rate relative to
GDP ω, which depends on the entry cost ψe, the entry probabilities h̃a, and the profitability
of each type through λ̄a.

Avg Profit Margin. The model moment is the average profits across firms,∑a(1−λ̄−1)ma.
The data moment is the average operating income before depreciation divided by sales for
firms with positive values. The moment is related to the private returns λ̄a of innovations.

Entry Rate. The model moment is the entry rate divided by the total innovation rate,∑
a xe,a(n̄a)/δ. The data moment is the total first patents divided by total patents. The

moment is related to the cost of entry ψe but also other factors that determine the allocations
between entry and incumbent innovation, such as innovation costs ψa.

Aggregate Growth. The moment is constructed using (9) and is set to target the pro-
ductivity growth rate of 1.63% reported by Aghion et al. (2019a) in the final period of their
data.28 The growth rate depends on both the average knowledge spillovers η̄a and R&D al-
locations across firm types sa and entry se. The knowledge spillover-citation ratio ν is set to
match the growth rate after other parameters are determined.

4.4 Parameter Values

Table 4 reports the calibrated model parameters. The estimated parameters show substantial
gaps in the underlying characteristics of firm types. As with the empirical evidence, there is
substantial variation across firm types in the profitability (1− λ̄−1

a ) and knowledge spillovers
(ln η̄a) of innovations. Relative to low type firms, innovations by high volume firms are
around 50% more profitable while innovations by high knowledge firms are around 25% less
profitable. In contrast, innovations by high volume firms have around 60% higher knowledge
spillovers than low type firms while high knowledge firms have almost four times higher

28This ignores the growth acceleration that occurs in the early 1990s, which is generally associated with
the computerization of the economy. See, for example, Aghion et al. (2019b), De Ridder (2020) or Ayerst
(2021) for models that incorporate features of computerization into growth models.
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Table 4: Calibrated Parameters

Parameter Value
Externally Calibrated Parameters
Discount Rate ρ 0.02
Cost Function Curvature ζ 2
Number of Researchers S 0.17
Prob of Zero Citation (%) α 12.8
Standard Dev of Citations σ 0.93

Internally Calibrated Parameters
Entry Cost ψe 1.91
Innovation Cost ψa (11.4 , 8.3 , 5.5)
Entry Probability h̃a (0.52 , 0.24 , 0.23)
Avg Private Return λ̄a (1.18 , 1.29 , 1.14)
Avg Citation µa (2.01 , 2.50 , 3.35)
Avg Public Return η̄a (1.08 , 1.13 , 1.32)
Patent-Innovation Ratio Λ 4.50
Know Spillover-Cite Ratio ν 0.0073

Notes: Parameters are ordered corresponding to low type, high volume, and high knowledge firms.
The transition matrix Γ is reported in (20).

knowledge spillovers. The gaps in the model parameters are moderately larger than the
empirical gaps because misclassification results in understated cross-type differences in the
data. For example, some high volume firms are classified as low type firms raising the average
profitability of low types leading to the underlying differences in profitability needing to be
higher in order to explain the observed empirical gaps.

Despite innovating more frequently, the innovation cost of high volume firms is higher
than for high knowledge firms. This is explained by the relatively high profitability of high
volume firms justifying large investments into R&D despite the relative innovation.

4.5 Goodness-of-Fit and Other Model Moments

The calibrated model replicates the main data characteristics. Table 5 presents additional
moments not directly targeted in the calibration. Panel A reports moments with direct data
counterparts as a check of the model’s goodness-of-fit. As with the targeted moments, the
model moments are based on observed types constructed using simulation data. Panel B
reports moments without direct data counterparts that describe cross-type differences, and
are based on the true firm types.

The model generates a similar patent distribution across observed types and similar dif-
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Table 5: Other Model Moments

A: Comparison with Untargeted Data Moments
Moment Data Model

Patent Share (55.5 , 37.6 , 6.90) (55.6 , 38.6 , 5.78)
Cites / Emp (0.00 , 1.26 , 1.50) (0.00 , 0.75 , 1.64)
Rel log(Sales) (0.00 , 2.80 , −0.22) (0.00 , 2.89 , −0.17)
Rel log(Emp) (0.00 , 2.35 , −0.12) (0.00 , 2.82 , −0.15)

B: Additional Model Generated Moments
Moment Model

Firm Share (%) ma (81.29 , 5.87 , 12.84)
Product Distribution (%) ha (57.43 , 34.43 , 8.14)
Innovation Rate (%) xa (7.88 , 15.86 , 12.72)
Skilled Labour sa (0.07 , 0.21 , 0.09)
Fixed Cost / Value ωBa/Va(π̄a, 1) (0.04 , 0.08 , 0.06)

Notes: Moments are ordered corresponding to low type, high volume, and high knowledge firms.
Model moments in Panel A are based on the simulation described in Section 4.2. Model moments
in Panel B are based on the equilibrium expressions for true firm types described in Section 2.

ferences in citations-per-employee. The patent share is important for R&D misallocation
because it is closely related to the product distribution, which is a key determinant of R&D
misallocation. Citations-per-employee provides another check on the innovation characteris-
tics of firm types between the model and data. The model also replicates the relative firm
sizes, which is a check on the product accumulation of firms.

Panel B summarizes moments for the true firm types that are not directly observed in the
data. Both high volume and high knowledge firms innovate more frequently than low type
firms. High knowledge firms innovate only moderately less frequently than high volume firms,
implying that most of the observed differences in patenting frequency between firm types is
due to firm size. Low types produce the majority of products lines, despite innovating less
frequently, because of the tendency for firms to transition to low types over time. The final
moment shows that the assumed fixed costs Ba account for a relatively small share of firm
value, such that Assumption (A) has little impact on the results.

4.6 Research Productivity

The gains from R&D reallocation depend on both the innovation technologies and the dis-
tribution of R&D wedges. I conclude this section by discussing the parameter implications
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for innovation technologies. The aggregate growth contribution of each firm type is

g = (xLhL + xeh̃L) ln(η̄L)︸ ︷︷ ︸
=26.6%

+ (xV hV + xeh̃V ) ln(η̄V )︸ ︷︷ ︸
=44.9%

+ (xKhK + xeh̃K) ln(η̄K)︸ ︷︷ ︸
=28.4%

.

Despite accounting for only 6% and 13% of firms, high volume and high knowledge firms
account for 45% and 28% of growth. The relatively large contributions are explained by: (i)
the large product share of high volume firms (around one third of product lines) increasing
their R&D scale; (ii) the higher frequency of innovations by high volume and high knowledge
firms compared with low type firms (Table 5); and (iii) the relatively higher knowledge
spillovers ln η̄a generated by high volume and high knowledge firm innovations.

The relative contributions does not imply that reallocating from low-type to high-type
firms will necessarily increase growth since the relative marginal research productivity of
firms may differ. High volume firms innovate more frequently, in part, because they invest
relatively more in R&D (Table 5). Table 6 reports measures of the marginal rate of ex-
pected knowledge spillovers and profits.29 The values correspond to the ability of the firms
to generate growth and the ability of the firm to generate profits.

Table 6: Research Productivity by Firm Type

Low Type High Vol High Know
Knowledge Spillovers / R&D 8.2 9.1 40.1
Profitability / R&D 17.1 17.1 17.1

Notes: Knowledge Spillovers / R&D is defined as expected knowledge spillovers xa ln(η̄a) divided by
R&D inputs sa. Profitability / R&D is defined as expected profits xaπ̄a divided by R&D inputs sa.

Firms invest to the point where expected marginal profits, not expected marginal knowl-
edge spillovers, are equal to marginal costs. R&D becomes misallocated because knowledge
spillovers could be increased by reallocating R&D resources to high knowledge firms that
have comparatively high marginal expected knowledge spillovers. Both low type and high
volume firms produce around one fifth of the knowledge spillovers of high knowledge firms.
The next section explores the growth gains from reallocating R&D as implied by Table 6.

The table highlights the novel feature of the model that is not present in other model of
innovative firms (e.g., Klette and Kortum, 2004; Lentz and Mortensen, 2008; Akcigit and
Kerr, 2018). When private and public returns are governed by the same parameters (e.g.,
when ηa = λa), the scope for R&D misallocation is limited since firms invest to the point

29The equation of the average knowledge spillovers to R&D with the marginal expected knowledge spillovers
follows from xa ln η̄a/sa = (sa/ψa)1/ζ−1 ln η̄a, which is equal to the marginal rate of knowledge spillovers
from increasing skill labor sa. Profits follows a similar argument.
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where marginal knowledge spillovers are (approximately) equal, even if research capabilities
(e.g., ψa, λ̄a) differ.30 Acemoglu et al. (2018) examine differences in average research pro-
ductivities driven by differences in firm fixed costs that are paid in R&D resources. In this
context, it is optimal for some high fixed cost firms to exit to free resources that could be
used for variable R&D costs.

5 R&D Misallocation

The previous sections highlight substantial heterogeneity in public and private returns to
innovation across firms as well as large cross-type gaps in measured research productivity.
I use the calibrated model to quantify the growth cost of R&D misallocation and how the
cost has changed over time.

5.1 R&D Misallocation Across Firms

I start by quantifying the cost of R&D misallocation in the late period (1991-2005). Figure
3 reports the R&D wedges in (15) by firm type that describe the relative gap between the
market and growth maximizing R&D allocations. For example, an R&D wedge of θL = 2.9
indicates that low type firms are allocated 2.9 times as much skilled labor as in the growth
maximizing allocation. R&D wedges are independent of the number of product lines firms
produce, such that a low type firm invests 2.9 times more than in the growth maximizing
allocation regardless of whether it produces one or ten product lines.

The wedges indicate that both the low type and high volume firms invest substantially
more, by factors of 2.9 and 2.4, than in the growth maximizing allocation. This is driven by
the comparatively small public returns in the case of low type firms and high private returns
in the case of high volume firms. In contrast, high knowledge firms invest substantially less
than in the growth maximizing allocation, only around one sixth, due to both high public
returns and low private returns. Given these differences, the gains from reallocation are
driven by reallocating R&D from low and high volume firms to high knowledge firms.

Gains from R&D reallocation. The growth maximizing allocation is achieved when
expected profitability is proportional to expected knowledge spillovers, π̄CFa ∝ ln η̄a, elim-
inating the R&D wedge (i.e., θa = 1 for all a). Table 7 summarizes output, growth, and

30This is only approximately true in most models since private and public returns are usually slightly
different functions of the same parameter. For example, in the baseline model setting η̄a = λ̄a does not
exactly equate private returns 1 − λ̄−1

a and public returns ln η̄a. This parameterization of the model would
imply small R&D misallocation and be unable to replicate the empirical evidence.
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Figure 3: R&D Wedges
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welfare (reported as a consumption equivalent defined in Appendix A) in two counterfac-
tual experiments. The counterfactual economies correspond to the product distribution ha
being held fixed at the benchmark economy distribution (Fixed) or being determined en-
dogenously based on the new R&D allocations (Flexible). The fixed experiment is equivalent
to the short-run growth gains from adjusting R&D allocations and the flexible experiment is
the long-run growth gains that are achieved as product lines become reallocated. Appendix
D.4 reports the transition dynamics between the fixed and flexible economies. The fixed ex-
periment is also useful as a lower bound on the growth gains from R&D reallocation because
it does not require assumptions on the accumulation of product lines.

Table 7: Gains from Reallocation

Benchmark Counterfactual
Fixed Flexible

Output Misallocation χ 0.9987 0.9945 0.9950
Growth Rate (%) g 1.63 1.91 3.06
Chg in Growth (%) gCF/g − 1 - 17.70 88.4
Chg in Welfare (%) ξ - 14.99 104.4

Notes: Benchmark refer to the calibrated equilibrium discussed in Section 4. In the counterfactual
equilibrium the private returns to R&D are set such that π̄CFa = ln ηa. Output misallocation and the
growth rate are given by (6) and (9). Welfare is calculated as described in Appendix A. The welfare
calculation in fixed equilibria assume that the distribution of firm types is fixed in all future periods
at the benchmark equilibrium level.

In both experiments, R&D misallocation causes a substantial loss in welfare and growth.
In the fixed counterfactual economy, the growth rate increases by 18% (or 28 basis points) to
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1.91%. This is slightly offset by output declining by around 0.4% relative to the benchmark
economy. The net impact is that welfare increases by 15% relative to the benchmark economy.
Figure 4 shows that the increase in growth is almost entirely driven by a reallocation from
low type and high volume firms to high knowledge firms.

Allowing the firm and product distributions to adjust to the new R&D allocations in-
creases the growth rate to just under double the benchmark economy. The increase in growth
is driven by an accumulation of product lines operated by high knowledge firms from under
10% in the benchmark economy to over 30% in the flexible economy. Product accumula-
tion magnifies the gains of R&D misallocation because it allows high research productivity
firms to increase their R&D scale. The mechanism is similar to Bento and Restuccia (2017)
and Ayerst (2020) where misallocation causes productive firms to invest less in productivity
improvements amplifying the costs of misallocation.

Figure 4: Product Allocation and Skilled Labor by R&D Activity
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A striking feature in the benchmark and both counterfactual economies is that low types
operate the majority of product lines (Figure 4). This is mechanically driven by the transition
of high volume and high knowledge types to low types over time. The transition probability
also limits the potential gains from reallocation compared with a hypothetical economy
where high knowledge firms operate all product lines. Figure 4 also shows that the flexible
experiment is a corner solution that allocates zero resources to entry.

The analysis shows substantial increases to the growth rate from reallocating R&D across
firms. A common concern in the output misallocation literature is that the theoretical gains
from reallocation (to an undistorted economy) may overestimate the practical gains from
reallocation since all economies have some degree of measured firm-level distortions. For
example, measured distortions may arise from measurement error or uncertainty inherent
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in production. A solution to this problem is to compare misallocation across economies
since these allocations are feasible. The next section takes this approach by comparing R&D
misallocation in the late period with the less-distorted early period. In this regard, the early
period acts as a lower bound on the achievable gains from R&D reallocation.

5.2 R&D Misallocation Over Time

I now examine the cost of rising R&D misallocation driven by increasing profit dispersion and
its relation to the secular declines in aggregate productivity growth and research productivity.
I measure the cost of rising R&D misallocation through a simple experiment that compares
growth in the benchmark economy with an economy where the expected profitability of
innovations λ̄a is set according to the early period (1976-1990). While I do not take a stance
on the drivers of these changes, rising profitability could be related to rising market power
or increasing patent protection.

Figure 5 reports the difference in the private returns to innovation and the implied R&D
wedges in the two periods. The other parameters are kept at the benchmark values, including
expected knowledge spillovers, ln η̄a, consistent with Table 2. Consequently, growth rate
differences between the two periods are explained by the R&D allocations and not differences
in innovation technologies. Appendix D.1 shows that comparing the benchmark economy
to an economy re-calibrated to match early period moments implies a similar decline in
aggregate productivity growth due to R&D misallocation.

Figure 5: Private Returns and R&D Wedges by Period
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Table 8 reports the main results. The model generates a stark growth slowdown between
the early and late periods driven by the concentrated increase in the profitability of high
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volume firms and the decline in profitability of high knowledge firms. R&D misallocation
accounts for a decline in productivity growth of around 11%, explaining around one third of
the growth slowdown reported by Aghion et al. (2019a). Additionally, output misallocation
increases over this period leading to a loss in output of around 0.13%.

Table 8: Rising R&D Misallocation

Early Period Late Period
1976-1990 1991-2005

Output Misallocation χ 1.0000 0.9987
Growth Rate (%) g 1.83 1.63
Chg. in Growth (%) - -11.04

The experiment also helps explain the falling research productivity found by Bloom et al.
(2020). Following Proposition 2, measured research productivity is the product of two compo-
nents: (1) the maximum growth rate g∗, which depends on R&D costs (ψa, ψe) and expected
knowledge spillovers ln η̄a; and (2) the allocative efficiency of R&D. The results indicate
that declining allocative efficiency leads to a substantial decline in growth over this period,
without requiring an increase in the cost of innovation or a decline in knowledge spillovers.
A back-of-the-envelope calculation shows that after accounting for the rise in researchers,
R&D misallocation explains around one sixth of the decline in research productivity (see
Appendix A.1 for details). A related takeaway of the experiment is that the mechanism is
consistent with rising R&D resources over this period since rising profits justify increased
investment, even as research productivity declines.

The upshot of the analysis is that R&D misallocation explains a significant share of the
decline in aggregate productivity growth and research productivity. Given this, policies that
shift cross-firm incentives to innovate could support a recovery in research productivity and
aggregate productivity growth, without increasing R&D expenditures.

5.3 Robustness and Other Results

Early period calibration (Appendix D.1). I re-calibrate the model to the early period
(1976-1990) and calculate the loss from R&D misallocation. Moving the late-period economy
to the early-period economy’s allocative efficiency would increase growth by a similar amount
as found in the baseline experiment.

R&D intensity (Appendix D.2). I extend the model to include R&D cost shifters and
recalibrate the model to match firm-type differences in R&D intensity. The growth gains
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from R&D reallocation are similar to the baseline experiment.

Social planner’s problem (Appendix D.3). I calculate the social planner’s R&D allo-
cation that accounts for the dynamic effect of R&D on product accumulation and the cost
of output misallocation. The social planner reallocates more R&D resources to high knowl-
edge firms than in the baseline experiment (Table 7) because product accumulation further
increases long-run growth. The gap between the social planner’s and the growth maximizing
allocations is relatively small.

Transition dynamics (Appendix D.4). I calculate the transition between the early
and late periods in the two economies in Section 5.2. The transition dynamics are relatively
short-lived and that the economy quickly transitions from the early period to the late period
balanced growth path.

6 Conclusion

R&D misallocation lowers research productivity and aggregate productivity growth. In this
paper, I develop a tractable model of heterogeneous innovative firms that extends the stan-
dard model (e.g., Klette and Kortum, 2004) to allow for mismatches in the expected private
and public returns to innovation. R&D misallocation arises because firm investment depends
on private returns while growth depends on public returns. The empirical analysis highlights
persistent wedges between the private and public returns to innovation that widen over time.
Using a calibrated version of the model, I find that reallocating R&D to match public returns
increases aggregate productivity growth by 18% on impact and doubles productivity growth
in the long run. Further, rising R&D misallocation since the 1970s explains over one third
of the observed slowdown in aggregate productivity growth.

The results suggest a number of paths for future research. The framework could be used
to examine direct channels of R&D misallocation and the rise in R&D misallocation over
time. The literature offers many candidates for the latter, such as rising market power (e.g.,
Cavenaile et al., 2020), patent protection (e.g., Akcigit and Ates, 2019) and intangible in-
vestment (e.g., De Ridder, 2020). The model also provides a starting point for other types of
R&D misallocation, such as within-firm or cross-sector R&D misallocation. The early-period
calibration (Appendix D.1) reveals that high volume firms were both less costly and prof-
itable innovators, potentially related to a change in innovation strategy over time in response
to the changing institutional environment (as documented by Kortum and Lerner, 1999). Fi-
nally, addressing the gap between private and public returns is a key policy challenge. The
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comparatively low R&D misallocation in the early period indicates that the R&D allocation
could be improved through policy.
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Online Appendix (Not for Publication)

A Model Appendix

A.1 Other Model Results

Welfare. Welfare on the balanced growth path can be written as

W (C0, g) = log(C0)
ρ

+ g

ρ2 ,

where C0 is output in period 0 and g is the growth rate. Consider a counterfactual econ-
omy with initial consumption C̃0 and growth g̃. The consumption equivalent between that
economy and the baseline economy is equal to

1 + ξ = exp
{

log(C̃0/C0) + g̃ − g
ρ

}
, (21)

where ξ is interpreted as the percentage increase in consumption the household would need
each period in order to be as well off as in the counterfactual economy.

Firm distribution. The mass of type a firms with size n are described by

Ṁa(n) =

 xe,a(1) + 2δMa(2)− (xa + δ)Ma(1) + σa(1) if n = 1
xe,a(n) + (n− 1)xaMa(n− 1) + (n+ 1)δMa(n+ 1)− n(xa + δ)Ma(n) + σa(n) if n > 1

where σa(n) = ∑
a′ γa′,aMa′(n)−Ma(n) describes the relative change of size n firms between

types. The mass of firms depends on the entry rate of type a firms xeh̃a; the rate that the
firm adds products xa relative to the creative destruction rate δ; and the relative transition
between types described by σa(n). The mass of type a firms is given byMa = ∑∞

n=1Ma(n)
and the total mass of firms in the economy as M = ∑

aMa. The share of type a firms is
defined as ma =Ma/M.

Aggregate research productivity. From Proposition 2, aggregate research productivity
can be written as

g

S
= ln η̄e

ψe

[
1 +

∑
a∈A

has
∗
a

S

(
ζθ1/ζ

a − θa
)]
, (22)
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where ln η̄e = ∑
a∈A h̃a ln η̄a. It follows that research productivity can decline either due to a

drop in the economy’s ability to generate growth—either a decrease in η̄a or an increase in
(ψe, ψa)—or an increase in R&D misallocation, increasing |θa − 1|.

Aghion et al. (2019a) report a decline in growth of 30% (≈1.63/2.32-1) while Bloom et al.
(2020) report a rise in effective researchers of around two. Together, this implies a decrease
in the left hand side of 65% (≈ 0.7/2.0 − 1) of its initial value. The results in Section 5.2
show that R&D misallocation accounts for a decline in growth of 11%, or around one sixth
(≈ 11%/65%) of the observed decline. There is still a large role for other channels to explain
the decline in research productivity and that this remains the more challenging question.

A.2 Proof of Main Results

Lemma 1. If the value of a firm can be written as V ([πi]ni=1) = ∑n
i=1 V (πi, 1) then the entry

problem can be written as:

Ve = max
xe

xe
∑
a∈A

[
h̃aEa [V (π̃, 1)]− Ve

]
− ψexe.

Proof The entry problem is given by

Ve = max
xe

xe
∑
a∈A

[
h̃a
n̄a

Ea
[
V ([π̃i]n̄ai=1, n̄a)

]
− Ve

]
− ψexe

Given V ([πi]ni=1) = ∑n̄a
i=1 V (πi, 1), then Ea

[
V ([π̃i]n̄ai=1, n̄a)

]
= Ea

∑n
i=1 V (πi) = n̄aEaV (πi, 1)

implying the result.

Proof of Proposition 1. The firm’s problem is given by:

rVa([πi]ni=1, n)−V̇a([πi]ni=1, n) =

max
x

n∑
i′=1

πi′Y − wsBa + δ [Va([πi]ni=1/{πi′}, n− 1)− Va([πi]ni=1, n)]
+x [EaVa([πi]ni=1 ∪ {π̃}, n+ 1)− Va([πi]ni=1, n)]− wssa(x)


+
∑
a′∈A

γa,a′ [Va′([πi]ni=1, n)− Va([πi]ni=1, n)]

.

I solve the value function using the guess and verify method, where I guess that

Va([π]ni=1, n) =
n∑
i=1

πi
ρ+ δ

Y (t).
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The guess implies that V̇a = gVa. Substituting the guess into the value function:

(r − g)Va([πi]ni=1, n) = max
x

n∑
i′=1

[
πi′ − ωBa − δ

[
πi′

ρ+ δ

]
+ xEa

[
π̃

ρ+ δ

]
− ωψaxζ

]
Y (t)

Solving the maximization problem implies that

xa =
[
Ea[π̃]/(ρ+ δ)

ωψaζ

] 1
ζ−1

=
[

π̄/ψa

ζ
∑
a′ π̄a′h̃a/ψe

] 1
ζ−1

where the second expression follow from substituting Ea [π̃] = π̄a and the wage rate in (10).
It follows that xπ̄a/(ρ + δ) − ωψaxζ = ψa(ζ − 1)xζa, which is equal to ωBa by assumption
(A). Substituting the interest rate r (= g + ρ) and simplifying the value function confirms
the guess:

(r − g)Va([πi]ni=1, n) =
n∑

i′=1

[
πi′ − ωBa + ψa(ζ − 1)xζa

]
Y (t)− δVa([πi]ni=1, n)

(ρ+ δ)Va([πi]ni=1, n) =
n∑

i′=1
πi′ .

Proof of Proposition 2. The maximum obtainable growth solves

g∗ = max
xa,xe

∑
a

[
haxa + xeh̃a

]
ln η̄a

subject to the resource constraint S = ψexe +∑
a haψax

ζ
a. Solving this problem implies that

x∗a =
 ψe ln η̄a
ζψa

[∑
a′ ln η̄a′h̃a′

]
 1
ζ−1

where the definition of θa follows. Note that both xa in the main text and x∗a above only
depend on the relative values of π̄a and η̄a. The fourth part of the proposition follows imme-
diately. This first part of the proposition can be derived as:

g∗ =
∑
a

[hax∗a ln η̄a] + x∗e

[∑
a

h̃a ln η̄a
]

=
∑
a

[hax∗a ln η̄a] +
[
S

ψe
−
∑
a

haψa(x∗a)ζ
ψe

] [∑
a

h̃a ln η̄a
]
,

where the second expression follows from the resource constraint. From the definition of x∗a:

hax
∗
a ln η̄a = hax

∗
a ln η̄a × x∗a

ζ−1

ζψa
[∑

a′ ln η̄a′h̃a′
]

ψe ln η̄a

 = haψaζ(x∗a)ζ
ψe

[∑
a

h̃a ln η̄a
]
.
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Substituting back into the expression for growth and using s∗a = ψax
∗
a
ζ gives

g∗ =
[
S

ψe
+
∑
a

has
∗
a

ψe
(ζ − 1)

] [∑
a

h̃a ln η̄a
]

The expression for the equilibrium growth rate follows similar steps:

g =
∑
a

[haxa ln η̄a] + xe

[∑
a

h̃a ln η̄a
]

=
∑
a

[haxa ln η̄a] +
[
S

ψe
−
∑
a

haψax
ζ
a

ψe

] [∑
a

h̃a ln η̄a
]

=
∑
a

[
haθ

1
ζ
a x∗a ln η̄a

]
+
[
S

ψe
−
∑
a

haψaθa(x∗a)ζ
ψe

] [∑
a

h̃a ln η̄a
]

=
[
S

ψe
+
∑
a

has
∗
a

ψe
(ζθ

1
ζ
a − θa)

] [∑
a

h̃a ln η̄a
]
.

The second part of the proposition then follow from comparing the above expression with
g∗. The third part follow from taking the derivative of g with respect to θa:

∂g

∂θ
= 1

1 +∑
a ha

s∗a
S

(ζ − 1)
(
θ1/ζ−1
a − 1

)
,

where it follow that the derivative is positive if θa < 1 and negative if θa > 1.

A.3 CES Production

The baseline model assumes that the final good is produced using a Cobb-Douglas aggregate
of intermediate goods j. Cobb-Douglas production implies that the profits of a good j do not
depend on its average knowledge spillovers k̄(t) and, consequently, on the innovating firms’
knowledge spillovers η. This limits the incentives for firm’s with higher expected knowledge
spillovers η̄a to innovate since they do not benefit from this innovation component.

To examine the consequences of this incentive, I consider an extension of the baseline
model to CES production and where production is yj = kj`j. CES production creates a link
between firm productivity and profits since more productive firms are charge lower prices and
capture higher market shares. In this regard, CES production allow for both components of
innovation—private returns λ and public returns η—to affect firm innovation decisions. From
a calibration perspective, it is unclear that this extension should impact the results since
the benchmark calibration does well at matching both firm profitability and other moments
related to market share, such as relative employment and sales (Tables 3 and 5). Given this,
I focus on the model differences rather than the quantitative differences.
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The final good production technology is now given by

Y (t) =

∫ 1

0

∑
f∈Fj

qjf
q̄(t)yjf (t)


σ−1
σ

dj


σ
σ−1

.

where q̄(t) =
(∫ 1

0 q
σ−1
j dj

) 1
σ−1 . I also assume that the distribution of η and λ are independently

drawn from type-specific distributions to simplify expressions. The model is otherwise the
same as in the main text. The production structure implies that demand for intermediate
good j is given by yj = Y (t)(qj/q̄(t))p−σj . The main consequence of changing the production
structure is that now expenditure on good j depends on its price pj.

Firms. Solving the firm’s problem gives the pricing rule p = [w(t)/kj]µj and µj =
min

{
λ, σ

σ−1

}
is the markup set by the firm. The markup must be (weakly) less than the

monopolist’s profit maximizing markup σ
σ−1 . Given the pricing rule, sales for good j are

equal to pjyj = Y (t)(q̄(t)w(t))1−σ (qjkj/µj)σ−1. Sales depend on the ability of the firm to
charge markups µj but also on the relative quality qj and productivity kj of good j. This
creates a benefit to firms for high public return innovations that is not present in the baseline
model. Additionally, sales-per-employee is the same in both models implying that a similar
calibration strategy can be used with CES model.31

Firm profits are given by

Πj = pjyj −
w(t)
kj

`j = κ(t)
 q̌j ǩj
µj

σ−1

(1− µ−1
j ) = κ(t)πj.

where κ(t) is a term that is common to all firms and πj describes the relative profitability
of good j, as in the baseline model. The values q̌j = qj

q̄(t) and ǩj = kj
k̄(t) are normalized values

of quality and embodied knowledge. Expected profits of an innovating firm a are given by

Ea[πj(t)] = Y (t)Ea

(λjηj
µj

)σ−1

(1− µ−1
j )

 .
For the case where firms draw from a degenerate distribution with λ̄a < σ/σ − 1 then it
follows that µj = λ̄a and so π̄a = η̄σ−1

a (1− λ̄−1
a ). The main difference in profitability between

the baseline model and the CES model is the inclusion of ησ−1
j , which accounts for the

31The main differences between markups in the two models is that the monopolist markup acts as a
ceiling in the CES case. This is not an issue for the quantitative analysis because average sales-per-employee
identifies average markups implicitly accounting for this ceiling.
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increase in size of higher knowledge products. The value function and optimal innovation
rates are the same as in the baseline model with the appropriate modification of profits.

Aggregate outcomes. Output is given by

Y (t) =

[∫ 1
0

(
qjkj
µj

)σ−1
dj
] σ
σ−1

q̄(t)
[∫ 1

0
(qjkj)σ−1

µσj
dj
] = χk̄(t)

where χ =
[∫ 1

0

(
q̌j ǩj
µj

)σ−1
dj

] σ
σ−1

/
[∫ 1

0
(q̌j ǩj)σ−1

µσj
dj
]
and where q̌j = qj

q̄(t) and ǩj = kj
k̄(t) . Unlike

the baseline model, output misallocation in the CES model depends on the joint distribu-
tion of knowledge, quality, and markups. However, there are a few similarities between the
expressions. First, a proportional increase in the level of markups does not affect output.
Second, if the markup is constant for all firms then the markup term µj drops out of the
expression for output. In this regard, only the dispersion in markups matters for output.
Third, a proportional increase in qualities also does not affect output.

It follows that the growth rate is equal to

g =
∑
a

[xaha + xeh̃a]
η̄σ−1
a − 1
σ − 1 .

Intuitively, this is because increasing the average value of quality does not affect aggregate
output and innovation is undirected across goods j.

Comparison of wedges. The wedge between the market and growth maximizing R&D
allocations in the CES model is given by

θa =
[

π̄a/
∑
a′ π̄a′h̃a′

(η̄σ−1
a − 1)/∑a′(η̄σ−1

a′ − 1)h̃a′

] ζ
ζ−1

where the differences with the baseline model expression are that the knowledge growth is
adjusted by the CES term σ − 1 and profitability π̄a depends on embodied knowledge.

Despite the change in the model setting and expression, the expressions for sales-per-
employee remains the same as in the baseline model implying that the same identification
of the private return λ̄a. To examine the quantitative impact of CES production, I set σ = 2
and the remaining parameters as in the baseline calibration. Figure 6 compares the R&D
wedges.
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Figure 6: Comparison of Cobb-Douglas and CES Wedges
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The R&D wedges in the Cobb-Douglas and CES models are almost identical implying
similar scope and magnitude of R&D misallocation. The main difference is that in the CES
model, the R&D wedges for both high volume and high knowledge firms are slightly larger
because of the effect of knowledge spillovers η on market size. However, this is quantitatively
negligible compared with distortions caused by differences in private returns. Given that the
main effect of CES production is on the profitability of firms, the similarity of wedges implies
that the remaining quantitative results are also quantitatively similar.

A.4 Output R&D Costs

In this section, I show that the model produces the same results if R&D costs are paid in
output rather than skilled labor. The model is the same as in the baseline text except that
there is no skilled labor and R&D costs are paid in output.

Consumption in the output cost model is given by C = Y −R−∑aBaY where R is the
total expenditure on R&D. The second, and main, difference is that now R&D costs for an
n product firm are given by

nfRa(x) = nfψax
ζY (t),

where Y (t) is now included as a scaling term to prevent explosive growth. Similarly, the cost
of entry R&D is now ψeY (t)xe and the fixed cost paid by firms is BaY (t). Total expenditure
on R&D as a share of output is then

R

Y
= ψexe +

∑
a

ψax
ζ
aha. (23)
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where the right hand side equals total skilled labor employment in the benchmark economy.
The solution to the model follows the same main steps as in the baseline model. Assuming

that entry is positive and that the analogue of (A) holds, the model solutions are the same
with two notable exceptions. First, the entry condition can now be rearranged to solve for
the creative destruction rate

δ =
∑
a∈A π̄ah̃a
ψe

− ρ.

Second, the entry rate is equal to xe = δ−x [diag(1 + δ − xa)− Γ′]−1 h̃. All other equilibrium
values are the same as in the main text. The upshot being that the reduction in variables
allows for the model to be characterized analytically.

A consequence of this setting is that the creative destruction rate δ is determined by
the entry condition. The value of δ dictates the aggregate flow of innovations, which along
with the relative R&D intensity determines the growth rate. In this regard it is difficult
to examine counterfactual economies in equilibrium as the value of δ is pre-determined by
the entry condition, which has a strong implication for both the growth rate and total
R&D expenditure. The closest comparison with the baseline experiments is to hold the
share of R&D expenditure R/Y fixed and examine R&D allocations across firm allowing
the creative destruction rate δ to be flexible. It follows from (23) that the counterfactual
gains to productivity growth are equal to the baseline experiments. This result is because
the total resources used for R&D on the right-hand side of (23) is equal to the skilled labor
supply in the benchmark economy. Given that this condition replaces the entry condition,
the resulting system of equations is the same as the growth maximizing problem considered
in the baseline economy. The consequence is that the output R&D cost model yields the
same results as the skilled labor R&D cost model.

The wedges derived in the baseline model can still be derived and capture the degree of
R&D misallocation. However, the interpretation is now different as there is an additional
inefficiency when R&D is paid in output. Firms now under- or over-invest in R&D because
they do not realize the full benefits of new products.32

32Over-investment is possible because of the separation of public and private returns to R&D. For example,
a firm with η̄a = 0 and λ̄a > 0 will invest in R&D because it is privately optimal but does not generate
public value from positive knowledge spillovers. Instead, the added risk from losing a product to this firm
will result in other firms further lowering investment.
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B Empirical Appendix

B.1 Granularity of Firm Types

The baseline classification of firm types sets the k means clustering algorithm to three groups.
Figure 7 compares alternative constructions where five and seven types are used.

Figure 7: Granularity of Firm Types
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The main takeaway from adding more firm types is that the placement of the new types
is between the low types and high volume or high knowledge firms. Importantly, adding new
types does not appear lead to a new combination of innovation characteristics, such as a
true high (high frequency, high knowledge) type.33 Instead, the increased granularity leads
to the addition of medium ability types that specialize in one of the two dimensions.

B.2 Comparison with Single Dimension Types

This section presents a comparison between the baseline classification of firms into different
types and a classification of firms based on the total citations-per-period. This produces
three firm types that can be thought of as low, mid, and high citations-per-period types. On
average, the major difference between the three types is the number of patents-per-period.
In terms of citations-per-patent, the mid and high types are relatively similar (26 and 31
citations-per-patent) and both outperform the low types (14). Table 9 compares the assign-
ment of types between the unidimensional characteristic and the baseline multidimensional
characteristics.

33This is not driven by the choice of odd numbers. Moving to four types leads to the addition of a true
medium type, but this type disappears under the six type specification.
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Table 9: Comparison with Single Dimension Types

Multidimensional Group
Unidimensional

Groups Low Type High Vol. High Know. Total

Low Type 72,290 27 6,361 78,678
Mid Type 1,877 693 1,131 3,701
High Type 34 1,203 213 1,450
Total 74,201 1,923 7,705 83,829

The results highlight that the two methods produce different clusters of firms. The unidi-
mensional clustering is most closely related to the high volume firms in the baseline types.
Most high volume firms tend to be classified as high types in the unidimensional groups. Only
around 1% of high volume firms are classified as low type firms. The majority of low types
are common across the two classifications with some of the baseline low types becoming mid
types in the unidimensional classification. High knowledge firms are a bit more mixed with
around 20% being classified as either mid or high types while the majority of high knowledge
firms are classified as low types as a consequence of relatively low patents-per-period.

Both the model and the empirics highlight the importance of the heterogeneity between
high volume and high knowledge firms. In this regard, the unidimensional classification misses
out on this important aspect of heterogeneity. The difference in the constructed types is
most evident when considering the implications for R&D misallocation. The unidimensional
types are ordered in terms of their relative innovative capabilities, which coincides with
their relative profitability. This would understate the degree of misallocation because from
this perspective, high types are relatively more innovative than mid types and also better
rewarded.

B.3 Robustness and Additional Results

The baseline results focus on the private and public returns measured by sales-per-employee
and citations-per-patent given that these outcomes directly relate to the model outcomes.
In this Appendix Section, I briefly outline the robustness to alternative specifications and
outcomes. I also explore alternative outcomes that support the model characteristics and the
differences between firm types.

B.3.1 Other Innovation Outcomes

Table 10 reports results for patents-per-employee, citations-per-employee, and R&D intensity
(R&D as a share of sales). As with the baseline results, the results are divided between the
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early and late periods.

Table 10: Other Innovation Outcomes

Early Period (1976-1990) Late Period (1991-2005)
(1) (2) (3) (4) (5) (6)

pat/emp cites/emp R&D/sales pat/emp cites/emp R&D/sales
High Vol. 0.309 0.717** -0.201 1.449*** 1.264*** -0.310**

(0.324) (0.341) (0.204) (0.389) (0.302) (0.129)
High Know. 0.206 1.314*** 0.305*** 0.180 1.500*** 0.240***

(0.185) (0.173) (0.0967) (0.121) (0.141) (0.0613)
Year FE Yes Yes Yes Yes Yes Yes
Sector FE Yes Yes Yes Yes Yes Yes
Observations 6883 6883 6287 7459 7438 6867

Notes: * p<0.10, ** p<0.05, *** p<0.01. Robust standard errors clustered at the firm level are
reported in parentheses. All regressions include year and sector (four-digit SIC) fixed effects. All
columns are estimated using PPML. pat/emp measures total patents applied in period t divided by
total employment in period t. cites/emp measures total citations received on all patents applied for
in period t divided by total employment in period t. R&D/sales measures the log of one plus reported
R&D in period t divided by total sales in period t. Unreported R&D values are assumed to be zero.

The results show that high knowledge firms invest more in R&D as a share of total
sales than high volume firms, in contrast with the predictions of the model. However, it is
important to note that while R&D in the model captures all innovative activities, R&D in
the data is narrower and only reflects what is reported. This is evident by the number of
firms that patent frequently and report zero or near-zero R&D expenditure.34 Additionally,
while the baseline results show higher R&D intensity for high knowledge firms, the results
are sensitive to the specification and excluding very high R&D intensity firms (e.g., reported
R&D greater than 75% of sales). In Appendix D.2, I show that the main results hold if
relative R&D intensity in Table 10 is taken at face value.

B.3.2 Other Market Outcomes

Table 11 reports other market outcomes related to size and growth by firm type. In addition
to being more profitable than other firm types, high volume firms also tend to be substantially
larger. High knowledge firms appear to be slightly smaller than low types, although the
coefficient is not precisely estimated.

34This also appears to differ by type with over half of observations by low type and high volume firms
reporting R&D intensity below 5% compared with only one-sixth for high knowledge firms. Similarly, high
knowledge types are much more likely to report R&D intensity above 75% than the other types.
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Table 11: Firm Size and Growth Outcomes

(1) (2) (3) (4) (5)
ln(sales) ln(emp) g(sales) g(emp) g(sales/emp)

High Vol. 2.429*** 2.060*** 0.136*** 0.0551*** 0.0194
(0.267) (0.235) (0.0256) (0.0185) (0.0194)

High Know. -0.151 -0.0872 0.0138 0.0597*** -0.0421**
(0.136) (0.102) (0.0230) (0.0152) (0.0168)

Year FE Yes Yes Yes Yes Yes
Sector FE Yes Yes Yes Yes Yes
Observations 7459 7459 6503 6503 6503

Notes: * p<0.10, ** p<0.05, *** p<0.010. Robust standard errors clustered at the firm level are
reported in parentheses. All regressions include year and sector (four-digit SIC) fixed effects. Growth
of variable x is measured as g(x) = (xt+1 − xt)/0.5(xt+1 + xt). Columns (3) to (5) include the log
of one plus the R&D expenditure as an additional control. Columns (3) and (4) include measures
of firm size, log of sales and employment, as additional controls.

sSales and employment growth are faster for both high volume and high knowledge firms,
which is consistent with the baseline calibration (Table 5). High volume firms do not tend to
grow in terms of sales per employee, whereas high knowledge firms appear to shrink in this
measure of profitability over time. This is important in the context of the model assumptions
because it shows that the relative ranking of the firm types in terms of sales-per-employee
does not change over time. In this regard, the results shows that high knowledge firms are
not receiving higher future profits for innovations.

B.3.3 Alternative Measures of Private Returns

Table 12 reports the baseline results using alternative measures of profitability. The three
additional measures examined are (i) sales per cost of goods sold, (ii) sales minus costs of
goods sold divided by sales, and (iii) operating income before depreciation divided by sales.
The results show the same trends in profitability as in the baseline results.

B.3.4 Public and Private Returns Using Patent Values

Table 13 constructs alternative measures of public and private returns using the patent values
constructed by Kogan et al. (2015). The alternative private return (PV for patent value) is
taken directly as the patent value from Kogan et al. (2015), which measures the change in
stock price of a firm around the date of the patents announcement. The alternative public
return (FPV for future patents’ value) measures the value of patents that cite the firm’s
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Table 12: Alternative Profit Measures

Early Period (1976-1990) Late Period (1991-2005)
(1) (2) (3) (4) (5) (6)

ln(sales/cogs) PM1 PM2 ln(sales/cogs) PM1 PM2
High Vol. 0.00788 0.00248 0.0206** 0.340*** 0.0732*** 0.0568***

(0.0429) (0.0183) (0.00894) (0.0965) (0.0249) (0.0115)
High Know. -0.0432 -0.0158 -0.00233 -0.0302 0.0132 -0.00718

(0.0363) (0.0151) (0.00664) (0.0645) (0.0174) (0.00591)
Year FE Yes Yes Yes Yes Yes Yes
Sector FE Yes Yes Yes Yes Yes Yes
Observations 6876 6883 6864 7442 7459 7407

Notes: * p<0.10, ** p<0.05, *** p<0.010. Robust standard errors clustered at the firm level are
reported in parentheses. All regressions include year and sector (four-digit SIC) fixed effects. PM1
measures sales minus cost of goods sold divided by sales. PM2 measures operating income before
depreciation divided by sales. Negative values of PM1 and PM2 are set to zero.

patents issued in the current period. This measure captures the market determined value of
future innovations that build on a firm’s patent. I exclude the value of patents by the same
firm because they may directly relate to the value of the original patent.35

Table 13 shows a similar pattern to the baseline results. High volume firms are the best
at generating private returns and somewhere between high knowledge and low type firms at
generating public returns. Additionally, the ability of high volume firms to generate private
returns to innovations has increased over time. Similar to the baseline results, high knowledge
firms generate the largest public returns.

Kogan et al. (2015) find that patent value is strongly correlated with citations-per-patent.
This is somewhat at odds with the results in columns (2) and (5) since high knowledge firms,
which tend to have higher citations, have lower patent value than high volume firms. Columns
(3) and (6) shows that citations-per-patent remain positively related to patent value even
after accounting for firm types. That is, within firm types more cited patents tend to be
more valuable.

B.4 Alternative R&D Wedges

I consider alternative measures of the firm-level R&D wedge constructed in (18). The first
alternative measure (Cost Approach) constructs the R&D wedge following more closely to

35I include patents that are applied for by multiple firms even if they include the same firm.
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Table 13: Alternative Measures of Public and Private Returns

Early Period (1976-1990) Late Period (1991-2005)
(1) (2) (3) (4) (5) (6)

ln(FPV) ln(PV) ln(PV) ln(FPV) ln(PV) ln(PV)
High Vol. 0.808*** 1.248*** 1.193*** 0.667*** 1.432*** 1.407***

(0.110) (0.176) (0.173) (0.114) (0.204) (0.206)
High Know. 1.332*** 0.255** 0.0682 1.289*** 0.444*** 0.370***

(0.127) (0.127) (0.135) (0.104) (0.112) (0.120)
ln(cites/pat) 0.171*** 0.0828**

(0.0347) (0.0360)
Year FE Yes Yes Yes Yes Yes Yes
Sector FE Yes Yes Yes Yes Yes Yes
Observations 3885 3702 3668 3711 4414 3883

Notes: * p<0.10, ** p<0.05, *** p<0.01. Robust standard errors clustered at the firm level are
reported in parentheses. All regressions include year and sector (four-digit SIC) fixed effects. All
columns are estimated using PPML. ln PV (patent value) measures the log of average patent value
(from Kogan et al., 2015) of patents applied for by firm f in period t. ln FPV (future patents’ value)
measures the average patent value (from Kogan et al., 2015) of all other firm f ′ 6= f patents that
cite patents applied for by firm f in period t.

the approach developed by Hsieh and Klenow (2009). Specifically, I infer the R&D wedge as
gap between the innovation output and innovation costs, measured by total citations divided
by total R&D expenditure reported by firms. It is follows that the firm-level R&D wedge in
the model is also equal to:

τf,t =
[

Total Citationsf,t
R&D Expendituref,t

]− ζ
ζ−1

, (24)

The wedge τf,t is the same wedge discussed in Section 3.2.36 That is, (18) and (24) should
produce the same measured wedges, up to a constant, if: (1) the only source of R&D misal-
location is the gap in private and public returns; (2) there is no measurement error. In terms
of measurement, (24) implicitly infers private returns from R&D expenditure and innovative
output but assumes that R&D is accurately recorded in the data.

The second alternative measure (Alt. Profitability) uses operating income before depreci-
ation divided by sales as the measure of profitability π rather than log of sales-per-employee

36The exponent makes the value of the wedge directly comparable to the value of (18). Without the
exponent, the expression is the analogue of using the average product of a factor (e.g., capital) to examine
output misallocation. Since the exponent scales the log wedge, it does not affect the pattern of misallocation.
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ln λ ≈ π. Figure 8 plots the alternative R&D wedge distribution for the early and late pe-
riods. As in the baseline, wedges are constructed at the firm level for consecutive five-year
periods and variables are demeaned each year prior to constructing the wedges.

Figure 8: R&D Wedges by Firm Type with R&D Targets
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(b) Alt. Profitability

Notes: Figure (a) plots the histogram estimate of log of the firm-level wedge in (24) over the early
(1976-1990) and late (1991-2005) periods. Figure (b) plots the histogram estimate of the log for
the firm-level wedge in (18) using operating income before depreciation instead of log of average
sales-per-employee as the measure of profitability. In both figures, the top and bottom two percent
of observations, based on firm-level wedges, are dropped in each period. The mean of log wedges is
normalized to zero in each period.

The figures highlights a similar increase in the dispersion of R&D wedges over time.
The standard deviation of wedges increases by around 10% in the cost approach and by
almost double for the alternative profitability approach. This result is reassuring despite the
clear measurement issues associated with R&D expenditure (e.g., unreported values). It is
also reassuring to note that the wedges are highly correlated with the baseline measure.
The coefficient from regressing baseline wedge on cost approach wedge is 0.21 (0.016) and
on the alternative profitability wedge is 0.48 (0.011), where the standard error is reported
in parentheses, suggesting that the same changes in relative profitability across firms are
showing up in R&D expenditure.

C Calibration Appendix

C.1 Identification

Table 14 reports the change in the calibration moments given a 10% increase in parameter
values. The table formalizes the intuition for the relationship between model moments and
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parameter identification discussed in Section 4.

Table 14: Change in Moments from a 10% Change in Parameter Values

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13
ψL −1.2 3.3 −0.4 1.2 0.2 −8.1 2.0 −3.5 2.5 −0.3 −2.7 0.0 1.6
ψV −20.3 −0.2 0.0 1.6 −0.5 2.3 −16.1 2.2 6.2 −1.0 10.8 0.1 29.5
ψK −0.9 −1.1 −0.4 −1.0 1.1 −1.7 1.0 −9.1 1.6 −0.7 −0.6 0.0 0.0
λL −7.5 −2.2 0.0 −0.1 0.5 4.2 −7.9 −2.3 −13.0 34.9 11.9 6.9 14.4
λV 1.5 2.0 −0.1 −0.3 0.6 −5.1 9.8 −4.2 24.6 1.1 −10.4 0.5 −29.8
λK −3.1 2.1 0.2 1.5 −1.1 0.6 −2.8 8.2 0.8 −28.5 4.0 0.9 7.6
µL 0.0 22.3 12.0 1.6 −1.4 1.1 0.0 −8.1 0.0 −16.8 0.0 0.0 0.0
µV 0.0 3.5 0.8 24.6 −0.4 −0.5 0.0 4.4 0.4 −16.3 0.0 0.0 0.0
µK 0.0 27.3 −1.2 2.5 14.6 −1.6 0.0 12.1 −1.3 16.9 0.0 0.0 0.0
h̃V 10.4 0.6 0.2 0.6 0.3 0.5 −2.2 −1.1 1.6 0.7 1.2 0.1 0.1
h̃K 1.2 3.3 0.4 −0.3 0.1 0.8 0.5 1.1 −1.1 2.2 −1.0 −0.2 −3.2
ψe −52.4 45.0 6.4 0.2 3.9 −21.5 −11.0 −9.7 10.3 14.9 −18.4 0.4 −88.8
Λ 6.9 −0.9 0.6 −0.1 −0.8 6.3 6.5 8.2 −2.7 1.9 0.0 0.0 0.0

Notes: The values report the percent change in the indicated moment for a 10% change in the
indicated parameter, excepted for λa which is calculated as 1.1 × (λa − 1). The moments are: M1
share of high volume firms; M2 share of high knowledge firms; M3 average citations-per-patent of low
type firms; M4 average citations-per-patent of high volume firms; M5 average citations-per-patent
of high knowledge firms; M6 average patent count of low type firms; M7 average patent count of
high volume firms; M8 average patent count of high knowledge firms; M9 sales-per-employee of high
volume firms; M10 sales-per-employee of high knowledge firms; M11 R&D Intensity; M12 average
profitability; M13 entry rate. Moments and calculations are described in Section 4.

A striking feature of the matrix is that some areas are relatively sparse. This is driven by
some of the parameters being related to the patenting outcomes in the extended model but
not the equilibrium outcomes in the main model. For example, the citation distribution does
not directly affect the equilibrium entry rate. In the joint calibration, this is more complex
since the citation distribution affects the recorded types â in the simulated data, which may
in turn have an impact on the choice of parameters that affect the entry rate.

C.2 Comparison of Data and Model Transition Matrices

In the baseline calibration, the transition matrix Γ is set to match the implied transition
matrix from the data. Table 15 compares the empirical transition matrix with the transition
matrix constructed using the simulated model. The empirical transition matrix is calculated
as the share of firms in both periods that transition from type â to type â′. The simulated
model transition is constructed as in the data. The initial five-year period is constructed
as described in Section 4.2, which is then extended for an additional five-year period. As
in the baseline calibration, I construct the recorded types â for each firm-period based on
innovation outcomes, rather than using the true types a. This allows for misclassification
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of firm types and creates the same type of bias as in the empirical data. The simulated
transition matrix is constructed as the probability that a firm with recorded type â in the
first five-year period will be recorded type â′ in the second five year period, conditional on
remaining the data.

Table 15: Comparison of Empirical and Model Implied Transition Matrix

Empirical Transition Simulated Model Transition
Low Type High Vol High Know Low Type High Vol High Know

Low Type 93.7 1.5 4.8 96.6 0.2 3.2
High Vol 20.0 78.5 1.5 22.1 77.4 0.5
High Know 58.6 2.6 38.8 68.7 0.0 31.3

Notes: Model transition based on recorded firm types of a simulation of 30,000 firms of each type,
as described in Section 4.2.

The transition matrices are remarkably similar given that the model transition matrix is
taken without modification from the data. Relative to the empirical transition, the model
transition displays less own-type persistence for high knowledge firms and less transition
between the high types. The former is likely to dampen the gains from R&D reallocation
since it implies a lower product share of high knowledge firms. The latter is unlikely to have
a major impact on the results because the transition probabilities are small, but would also
tend to dampen the gains from R&D reallocation

C.3 Ex-Ante Versus Ex-Post Heterogeneity

A concern is that the construction of the firm types reflect ex-post heterogeneity in patenting
outcomes rather than ex-ante differences in firm innovative capabilities. The calibration
addresses this by allowing for the same ex-post heterogeneity in patenting outcomes and
type misclassification in the model moments. In this section, I examine whether a model
with a single firm type could replicate the data moments.

For the single type-model, I set the private returns λa and average citations µa to match
the average values from the baseline calibration, such that the new values are λ′a = ∑

amaλa

and µ′a = ∑
amaµa. I also set the public returns ηa to the values implied by µ′a. Table 16

reports the resulting model moments from this experiment.
The single-type model is unable to replicate the gaps in relative sales-per-employee since

all firms draw from the same distribution of private returns λ. In this regard, it is clear
that the single-type model is unable to replicate a key feature of high volume firms in the
data. The single-type model explains only 1% (≈ (0.05× 11.0× 100.3)/(2.3× 15.4× 147.6))
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Table 16: Model Moment based on Single Type

Moment Data Single-Type Model
Firm Share (88.5 , 2.30 , 9.20) (94.4 , 0.05 , 5.54)
Citations-per-Patent (10.5 , 15.4 , 55.2) (11.1 , 11.0 , 48.6)
Patent Count (5.5 , 147.6 , 5.5) (5.8 , 100.3 , 3.4)
Rel log(Sales-per-Emp) (0.00 , 0.36 , -0.11) (0.00 , -0.00 , -0.00)

Notes: Single-Type Model moments based on recorded types of a simulation of 30,000 firms, as
described in Section 4.2.

of total knowledge spillovers produced by high volume firms and less than one-third (≈
(5.5×48.6×3.4)/(9.2×55.2×5.5)) of total knowledge spillovers produced by high knowledge
firms. The single-type model does reasonably at matching citations-per-patent but is unable
to replicate either the frequency of firms that fit the criteria or the patent rate of these firms.

The experiment should not be taken as an assessment of how much of the results are
explained by ex-post heterogeneity. First, the model incorporates the same source of ex-post
heterogeneity implying that the baseline results account for ex-post heterogeneity. Second,
Table 16 overstates the role of ex-post heterogeneity in patenting outcomes. This is be-
cause the single-type model pools ex-ante heterogeneity across firm types leading to a higher
likelihood that firms are recorded as high volume or high knowledge firms and improving
outcomes of low type firms. This is clearly evident in Table 16 by the fact that low type
firms over-perform the data across all dimensions. In this regard, the experiment is a test of
whether ex-post heterogeneity can explain the data rather than how much of the data can
be explained.

D Additional Quantitative Results and Extensions

D.1 Early Period Calibration

The baseline results find that growth declined because of rising R&D misallocation. The
decline in growth is measured as growth in the benchmark economy compared with growth
in a counterfactual economy where profitability of firm types is adjusted to match the early
period of the data. An alternative approach is to recalibrate the economy to the early period
and compare the R&D misallocation in the early and late period economies.

I follow the same approach as in the baseline calibration. I reduce the stock of skilled
labor to half its initial value, such that S = 0.085, to be consistent with the increase in
effective researchers documented by Bloom et al. (2020). I also target an R&D intensity of
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6.6% to be consistent with the late period value and increase in R&D to GDP reported by
the National Science Foundation. Table 17 summarizes the fit of the model.

Table 17: Early Period Calibration Moments

Moment Data Model
Firm Share (%) (89.3 , 2.30 , 8.40) (89.7 , 2.28 , 8.04)
Citations-per-Patent (11.1 , 13.1 , 54.6) (10.8 , 13.0 , 53.9)
Patent Count (5.2 , 150.7 , 4.1) (5.5 , 140.2 , 4.5)
Rel log Sales-per-Emp (0.00 , 0.00 , 0.00) (-0.01 , -0.01 , -0.00)

R&D Intensity (%) 6.6 6.3
Avg Profit Margin (%) 12.6 13.0
Entry Rate (%) 10.2 10.3
Growth Rate (%) 2.32 2.32

Notes: Moments are ordered corresponding to low type, high volume, and high knowledge firm types.
Type-specific moments are calculated using recorded types from data generated from a simulation of
30,000 firms (described in Section 4.2).

The table highlights several differences between the early and late period calibrations. The
most notable difference is the sharp rise over time in the sales-per-employee by high volume
firms. In terms of innovation outcomes, the performance of the three firm types is relatively
similar to the early period, as also noted in the empirical analysis. The aggregate moments
highlight the decline in entry rate and growth as well as the rise in average profitability.
Table 18 reports the parameter values for the early period.

Table 18: Comparison of Early and Late Period Parameters

Parameter Early Period Late Period
Entry Cost ψe 1.11 1.91
Innovation Cost ψa (8.67 , 4.16 , 5.72) (11.44 , 8.34 , 5.50)
Entry Probability h̃a (0.57 , 0.26 , 0.16) (0.52 , 0.24 , 0.23)
Avg Private Return λ̄a (1.15 , 1.15 , 1.15) (1.08 , 1.14 , 1.39)
Avg Citation µa (2.08 , 2.31 , 3.22) (2.01 , 2.50 , 3.35)
Avg Public Return η̄a (1.16 , 1.20 , 1.57) (1.08 , 1.13 , 1.32)
Patent-Innovation Ratio Λ 5.80 4.50
Know Spillover-Cite Ratio ν 0.0135 0.0073

Notes: Parameters are ordered corresponding to low type, high volume, and high knowledge firm
types. Externally calibrated parameters are kept the same as in the baseline calibration with the
exception of the total stock of skill labor, which is set to S = 0.085.

The parameter differences reflect the differences in moments between the early and late
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period calibrations. R&D costs (ψa, ψe) are substantially lower than in the late period cal-
ibration, reflecting both the lower stock of researchers S and higher growth rate g in the
data. This reflects the secular decline in research productivity found by Bloom et al. (2020).
Relative R&D costs also display a different pattern, with high volume firms having the low-
est R&D costs and the biggest change relative to the late period calibration. The relative
knowledge spillovers also narrow slightly relative to the late period, reflecting a narrowing in
citations-per-patent in the data, and each citation reflects a larger contribution to aggregate
productivity growth.

Table 19 compares the potential gains in growth from reallocating R&D in both the early
and late period. As in the baseline experiment, I compare the growth rates when R&D
is reallocated both under the assumption that firms and products are held fixed (Fixed
Distribution) and able to vary endogenously (Flexible Distribution).

Table 19: R&D Misallocation in the Early and Late Periods

Early Period Late Period
Benchmark Growth Rate (%) 2.32 1.63

Counterfactual Growth Rate (%)
Fixed Distribution 2.47 1.91
Flexible Distribution 2.83 3.06

The two experiments reveals slightly different takeaways about growth over this period.
The fixed distribution experiment shows almost the same result as the baseline results.
The decline in the maximum obtainable growth rate was only around 23% (≈ 1.91/2.47 −
1), around two thirds of the decline in the growth rate. Put differently, if R&D allocative
efficiency was held fixed, the growth rate in the late period would be around 1.79% (≈
2.32/2.47× 1.91) or around 10% higher. This value is similar to the baseline experiment.

The flexible distribution experiment shows that the long-term potential of the economy
increased relative to the early period. The late-period BGP growth rate from reallocating
R&D increases relative to the early period. The increase in the growth potential is driven
by the higher share of high knowledge firms in that the economy can support in the BGP
equilibrium, in part due to higher h̃K . An important caveat with this result is that the
doubling of R&D resources S implies that the increase in growth would still constitute a
decline in aggregate research productivity.
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D.2 Adding R&D Expenditure as a Calibration Target

The baseline calibration identifies R&D wedges using relative profitability and citations-per-
patent across firm types. An important moment that is not directly targeted in the calibration
is the relative research intensity. Instead, relative R&D intensity is inferred using the firm’s
optimality conditions. Appendix Table 10 shows that research intensity is higher for high
knowledge firms. In general, there are reasons to suspect that reported R&D expenditures
do not accurately reflect the entirety of innovation-related expenditures. For example, this
could be the consequence of R&D being misreported (e.g., many firms report zero R&D
expenditure) or R&D expenditure excluding activities not legally classifiable as R&D expen-
diture (e.g., consulting fees).37 Given these concerns, I avoid directly targeting relative R&D
expenditures in the baseline calibration. In this section, I explore the quantitative robustness
of the results when R&D expenditures are also targeted.

To this end, I extend the model to include an additional wedge on R&D expenditures.
Specifically, I assume that R&D expenditure is equal to

Actual R&D Expenditure = ϕa × ws(t)ψaxζan︸ ︷︷ ︸
=Reported R&D

where ϕa is a cost shifter on R&D expenditure that is unreported in the data. An interpreta-
tion is that the cost shifter represents true costs to R&D that are not reported, or unobserved
(as in, for example, Akcigit et al., 2019). In this case, the baseline experiments are correct
and ϕa should be considered to be the same as ψa, i.e., there is no loss in treating the two
as a composite. This is my preferred interpretation. An alternative interpretation is that ϕa
represents an additional distortion to the market and could be removed through resolving
institutional frictions. In this interpretation, the distortions ϕa are analogous to the taxes
in the misallocation literature (see Restuccia and Rogerson, 2008; Hsieh and Klenow, 2009),
where ϕa = 1 indicates no distortion. I explore the quantitative implications of this latter
interpretation in this section since it provides an alternative view of R&D misallocation.

Given the modification to R&D expenditure, the R&D wedge is now given by

θa =
[

π̄a/
∑
a′ π̄a′h̃a′

ϕa ln η̄a/
∑
a′ ϕa′ ln η̄a′h̃a′

] ζ
ζ−1

.

The interpretation is the same as in the baseline model. The impact of the cost shifter ϕa
37Additionally, these issue appear to bias towards higher R&D spending by high knowledge firms, which

less frequently reports zeros and more frequently report high R&D shares (>75% sales), and lower R&D
spending by high volume firms, which more frequently report zeros.
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is that now the cost of R&D affects the gap between the market and growth maximizing
allocations. I set the cost shifter ϕa to match the relative R&D intensity between types in
Table 10 and scale the average value of ϕa such that the average tax across product lines is
one. I also set the product of R&D costs ψa and the cost shifter ϕa to be equal to R&D costs
in the baseline model. This implies that all other model moments will match the baseline
calibration when parameters are held at their benchmark values. Figure 9 reports wedges θa
and cost shifters ϕa for each firm type.

Figure 9: R&D Wedges by Firm Type with R&D Targets
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(b) R&D Cost Shifter ϕa

The model interprets the low R&D intensity of high volume firms with a high R&D cost
shifter. Consequently, the R&D wedge adjusts such that high volume firms are allocated
close to the growth maximizing value while low type firms are even more over-allocated
R&D relative to the baseline calibration. High knowledge firms still perform relatively too
little R&D compared to the growth maximizing R&D allocation. The cost shifter changes the
dynamics of R&D misallocation to be a reallocation from low type firms to high knowledge
firms. Table 20 reports the gains from reallocating R&D to maximize growth by setting the
R&D cost shifters equal to one, ϕa = 1, and profitability proportional to knowledge spillovers,
π̄a ∝ ln η̄a. As in the baseline experiments, I consider the gains when the distribution is held
fixed at the benchmark distribution and endogenously adjusts to the new R&D allocations.

For the fixed distribution experiment, the inclusion of R&D wedges slightly increases
the gains from reallocation relative to the benchmark experiment. This is because there
is now an additional channel of reallocation compared to the baseline experiment. For the
flexible distribution experiment, the inclusion of R&D wedges decreases the potential growth
gains from R&D reallocation by around half. The decline in the growth gains is due to
the implied investment cost ψK of high knowledge firms declining relative to the baseline
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Table 20: Gains from Reallocation with R&D Expenditure as a Target

Benchmark Counterfactual
Fixed Flexible

Output Misallocation χ 0.9987 0.9956 0.9974
Growth Rate (%) g 1.63 1.55 1.49
Chg in Growth (%) gCF/g − 1 - -4.5 -8.2
Chg in Welfare (%) ξ - -3.9 -6.6

parameterization, leading to less scope for high knowledge product accumulation.
The baseline experiments provide support for policies that reallocate R&D resources from

high volume to high knowledge firms. The above experiment highlights a note of caution to
policy by showing that if R&D expenditure values are taken at face value then high volume
firms may also be under allocated R&D resources. Consequently, disincentivizing R&D by
high volume firms can be potentially damaging to aggregate productivity growth.38 Given
this, the more prudent policy advice is to focus on encouraging R&D and innovation by high
knowledge firms that tend to invest too little in R&D in both calibrations.

D.3 Dynamic Social Planner’s Problem

I define R&D misallocation relative to the growth maximizing R&D allocation to draws a
clear parallel with the output misallocation literature where the primary interest is exam-
ining how misallocation affects aggregate productivity, not welfare. This comparison is also
more relevant to the question of slowing productivity growth and relies less on the model
structure. An alternative approach is to define R&D misallocation relative to the welfare
maximizing R&D allocation that would account for the effect of markup dispersion on out-
put misallocation as well as the effect of the R&D allocation on the product distribution. I
compare the dynamic social planner’s allocation with the growth maximizing allocation.

The constrained dynamic Social Planner’s Problem is given by

max
xe,[xa,ha]a∈A

W (C0, g) (25)

subject to (6), (9), (13), and the resource constraints and where welfare W (c0, g) is defined
in Appendix A.1. I assume that the social planner is unable to reallocate product lines across
firms. If this were the case then the social planner would reallocate all product lines to high

38There are other potential reasons that disincentivizing R&D by one group of firms may lower aggregate
productivity growth. A simple example is that if R&D resources are perfectly elastically supplied then
lowering R&D by a firm type lowers aggregate R&D and consequently growth.
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knowledge firms because they have the highest research productivity.
Table 21 compares output, growth and welfare under the benchmark allocation, the knowl-

edge spillover allocation (Know Spill), and the dynamic social planner’s allocation (DSPP).
The knowledge spillover allocation is the same as the flexible distribution experiment in
Section 5. Figure 10 compares the allocations in the three economies.

Table 21: Output, Growth, and Welfare with Dynamic SPP Allocation

Benchmark Know Spill DSPP
Output χ 0.9987 0.9950 0.9988
Growth (%) g 1.63 3.06 3.17
Chg. in Welfare (%) ξ - 104.3 116.2

Notes: Benchmark refers to Benchmark Calibration described in Section 4. Know. Spill. refers to
the equilibrium where firm profits are set equal to knowledge spillovers, π̄a = ln η̄, as in the main
quantitative experiment in Section 5. DSPP refers to the dynamic social planner’s problem in (25).

The social planner’s allocation increases investment by high knowledge firms further than
in the benchmark experiment in order to increase the share of high knowledge products in
the steady state.39 Given the relatively small incremental gain in growth and welfare, setting
profits to match knowledge spillovers leads to a reasonable approximation of the socially
optimal R&D allocation.

Figure 10: Dynamic SPP Allocations
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39sK declines relative to the knowledge spillover allocation because sK is reported per product line. The
increase in high knowledge products hK in the social planner’s allocation increases aggregate R&D spending
causing sK to decrease per product line.
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The social planner’s allocation highlights an important caveat with the R&D wedges
θa. The wedges highlight the R&D allocation that would maximize aggregate productivity
growth for a given distribution of products. However, this is not necessarily the R&D al-
location that maximizes growth after accounting for the effects of R&D allocations on the
product distribution nor is it the R&D allocation that maximizes welfare. Consequently,
short run growth could be increased above the social planner’s allocation growth rate by re-
allocating resources to match knowledge spillovers. However, this would be short lived as the
distribution of products would adjust to the new R&D allocations and the economy would
converge to the knowledge spillover allocation. The social planner’s allocation also implies
that small wedges that favor high research productivity innovators may be desirable as it
improves the distribution of innovators in the long-run. This is an important caveat as it
implies that some degree of R&D misallocation may be desirable.

D.4 Transition Dynamics

Transition dynamics can have important implications for aggregate welfare and the relevant
time horizon of policies. I examine the transition dynamics of the model between the early and
late period economies examined in Section 5.2. I assume that the profitabilities immediately
adjust in period 0 to the late period values. Given that the changes in profitabilities were
likely gradual and involved other parameters simultaneously changing, this experiment is
meant for illustrative purposes rather than to take a stance on the path of growth over this
time period. Figure 11 summarizes the transition path for the growth rate and the product
distribution ha(t).

The figures show that growth drops immediately due to the increase in R&D misallocation
and then gradually declines as the product distribution adjusts to the new BGP. The majority
of the decline occurs within the first 10 years of the transition supporting that changes in
profitability over this time period would be observed in the growth statistics.

Algorithm. I calculate the transition path over T periods with length dt = 0.01. I start
the economy in the initial benchmark BGP equilibrium and assume that the shock occurs in
period t = 0 and the economy reaches the new BGP after T periods. The algorithm modifies
the algorithm in Acemoglu et al. (2016b). The transition path is calculated as:

1. Guess the value function va(t) for each t, where va(t)π = Va(π, t);

2. Solve {xa(t), xe(t)} sequentially where xa(t) =
[
e−ρdtψeπ̄a/ψaζ

[∑
a′ π̄a′h̃a′

]]1/(ζ−1)
and

xe(t) is solved using the resource constraint;40

40The entry condition is used in the expression for xa(t) ensuring that it holds along the transition path.
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Figure 11: Transition Dynamics
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3. Update the firm-type distribution, ha(t+dt) = ha(xa(t)−δ)dt+xe(t)h̃adt+
∑
a′ γa′,aha′ ;

4. Solve the new value function ṽa(t) backwards (from period T to 0) using va(t) =
1 + e−ρdt [va(t+ dt)− δ(t)va(t+ dt)];41

5. Check if the value function has converged, |ṽa(t) − va(t)| < 10−6. If not then set
va(t) = ṽa(t) and repeat from step 2.

41The form of va(t) assumes that Ba(t) is set to cancel out the option value of innovation. This is a
reasonable approximation given that the value of Ba(t) is quantitatively small in the baseline calibration
and that Ba(t) would not vary much over the transition path.
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