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Abstract

To what extent do firm-level institutional distortions drive cross-country tech-
nology differences? I develop a quantitative model of technology adoption in
which heterogeneous firms adopt technology depending on their underlying
productivity and institutional environment. The institutional environment is
represented by idiosyncratic firm-level wedges on revenues that distort firm de-
cisions. The model is calibrated to match the US firm employment distribution
and the average adoption length of new technologies. In less developed coun-
tries, measured institutional distortions target highly productive firms delaying
the adoption of new technologies as these firms are (otherwise) early adopters.
Quantitatively, measured institutional distortions explain around half of the
observed cross-country variation in adoption lags. Additionally, distorted tech-
nology adoption over doubles the aggregate productivity loss compared with
static misallocation alone.
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1 Introduction

Despite the globalization of knowledge, large gaps in the adoption and use of tech-
nologies across countries persist.1 Technologies used by firms in developing countries
often lag several decades behind their counterparts in advanced economies, despite
the large potential gains from adoption. What barriers prevent technologies from con-
verging? Banerjee and Duflo (2005) note, for the case of India, that while many firms
are aware of modern technologies, they lack sufficient scale to profitably adopt these
technologies. The focus on the lack of scale coincides with a large literature, starting
with Restuccia and Rogerson (2008) and Hsieh and Klenow (2009), documenting that
productive firms in developing countries often face challenges accumulating resources
as institutional distortions prevent resources from being reallocated across producers.2

I examine the extent to which measured differences in institutional distortions
act as a barrier to the adoption of new technologies in developing countries. Us-
ing a quantitative model of technology adoption by heterogeneous firms, I find that
measured institutional distortions explain around half of the observed differences in
cross-country adoption lags. Additionally, distorted technology use across firms over
doubles the aggregate productivity loss compared to factor misallocation alone.

My first contribution is to develop a novel model of technology adoption by het-
erogeneous firms that face idiosyncratic institutional distortions. Following Hopen-
hayn (1992), firm heterogeneity arises from underlying differences in firm capabilities
whereas institutional distortions are captured by an idiosyncratic wedge on firm rev-
enues, as in Restuccia and Rogerson (2008). The idiosyncratic wedges act as a stand-
in for institutional factors that cause a reallocation of resources across firms, such
as firing costs, credit market constraints, or weak property rights (see, for example,
Hopenhayn and Rogerson, 1993; Buera et al., 2011; Akcigit et al., 2021). Firms adopt
costly technology, which determines the firm’s productivity along with the firm’s un-
derlying capability. Building on Parente and Prescott (1994), the cost of adopting new
technologies depends on the worldwide technology frontier and an aggregate barrier
to adoption, which shifts the cost of adopting new technologies for all firms.

1See empirical evidence from Comin and Hobijn (2010) and Comin and Mestieri (2018).
2Others show that these same institutional distortions may be important for explaining other

cross-country differences, such as firm life-cycles (Hsieh and Klenow, 2014) and average firm size
(Bento and Restuccia, 2017). Other studies of technology find similar between-firm differences in
technology use (Griliches, 1957; Suri, 2011; Chen, 2020).
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The main tradeoff faced by firms is that newer, more productive technologies are
also more expensive compared to older technologies. This leads to more capable firms
and firms that benefit more from institutional distortions adopting technologies ear-
lier. Consequently, the equilibrium features a non-degenerate distribution of technolo-
gies and employment in which larger firms (by employment) use newer technologies.
The distribution of technologies implies a gradual adoption of new technologies that
is used to discipline technology parameters in the quantitative analysis.

Cross-country adoption lags depend on both the difference in institutional dis-
tortions and the aggregate barrier to adoption. Institutional distortions delay the
adoption of new technologies to the extent that they delay early adopters. This com-
presses the distribution of technologies used across firms leading to a shorter adoption
period. Aggregate barriers affect the cost of adoption equally for all firms leading to
a shift in the distribution of technologies used across firms. Given this, aggregate
barriers are taken as a residual measure of technology use in the calibration.

The benchmark economy is calibrated to match United States’ data. Following
Hsieh and Klenow (2009), I discipline the distribution of firm-level productivities
from the employment distribution of firms and estimates of institutional distortions.
However, technology parameters are difficult to estimate in practice because detailed
firm-level data on technology use is, generally, unavailable. My second contribution
is to provide a novel solution to this problem by showing that aggregate time-series
data on the adoption of new technologies can be mapped into the cross-sectional
distribution of firm-level technologies. Technology parameters can then be disciplined
using the adoption length of new technologies. Intuitively, the length of adoption
informs the change in the relative costs and benefits of new technologies over time.

My third contribution is to use the model to quantify the extent that institutional
distortions account for cross-country differences in technology adoption lags and pro-
ductivity. In the data, I measure cross-country technology differences using technology
adoption lags between the US and other countries. Technology adoption lags are used
to calibrate aggregate barriers to adoption—the residual measure of technology in
the model—and to provide a quantitative context for the results. I take technology
adoption lags from Comin and Hobijn (2010)’s estimates of country-specific technol-
ogy adoption lags constructed using a broad set of technologies (e.g., railways, cars,
PCs). I follow Bento and Restuccia (2017) by measuring cross-country distortions
directly using firm-level data for a range of countries. I parameterize cross-country
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differences using the relative correlation of measured institutional distortions to firm-
level productivity, which tends to be higher in lower income countries, since this is
the primary factor influencing the adoption lag of technologies in the model.

Moving the correlation of institutional distortions from the value in the US bench-
mark economy to the value in the lowest income countries delays technology adoption
and decreases aggregate productivity. The counterfactual economy adopts technolo-
gies 16 years later than in the benchmark economy, around one-third (= 16/48) of
the observed adoption lag in the data. While the impact is largest on early adopters,
institutional distortions cause a sizable delay throughout the firm distribution. The
median firm in the counterfactual economy uses technologies 11 years older than in
the benchmark economy. The delays in technology adoption also magnifies the pro-
ductivity cost of institutional distortions relative to factor misallocation alone. The
benchmark economy is around 123% more productive than the counterfactual econ-
omy, explaining around 20% of the empirical productivity gap. Around two thirds
of the productivity gap between the benchmark and counterfactual economies is ex-
plained by differences in technology adoption.

My paper builds on the literature examining drivers of cross-country technology
differences. Parente and Prescott (1994) and Comin and Hobijn (2010) model tech-
nology differences as arising from country-specific aggregate barriers to technology
adoption. I develop a novel quantitative framework in which institutional distortions
are a micro-foundation for barriers to technology adoption. This channel is quantita-
tively important explaining around half of the variation in cross-country technology
adoption across countries and around one-third of the gap in technology adoption
lags between the lowest income countries and the US. Firm-level distortions provide
a path for future work by connecting aggregate models of technology adoption to
production heterogeneity and micro-level data.

My paper also builds on a series of papers that examine the dynamic effects of
misallocation (Gabler and Poschke, 2013; Midrigan and Xu, 2014; Hsieh and Klenow,
2014; Bento and Restuccia, 2017; Guner et al., 2018). This literature finds that dy-
namic firm decisions amplify the effects of misallocation through the firm-level pro-
ductivity distribution. I similarly find that institutional distortions compress the firm-
level productivity distribution, resulting in lower aggregate productivity and magni-
fying the costs of misallocation. An upshot of the analysis is that this compression
is stronger in more severely distorted economies implying that the magnification is
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increasing in the severity of distortions. Quantitatively, I find that the aggregate
productivity cost for the lowest income countries is around 123% (around 20% of
the observed gap in output-per-worker) with around two-thirds driven by distorted
technology.

The remainder of this paper is organized as follows: Section 2 describes the model
and its properties. Section 3 calibrates the model and discussed the fit with data. Sec-
tion 4 examines the role of distortions for cross-country productivity and technology
differences. Section 5 concludes.

2 Model

I develop a model of technology adoption decisions (as in Parente and Prescott,
1994) by heterogeneous firms that face institutional distortions (as in Restuccia and
Rogerson, 2008). I show that the model implies a non-degenerate distribution of
technologies used by firms and that this distribution implies an aggregate adoption
curve for technology adoption. In the next sections, I use this model as a setting to
quantify the cost of institutional distortions to cross-country aggregate productivity
and technology adoption.

2.1 Economic Structure

Time is discrete and indexed by t. The economy is populated by a unit mass of
infinitely lived households and an endogenous mass Mt of firms.3 The economy is
closed and represents an individual country in the quantitative analysis. Countries
differ in their institutional environment, aggregate barriers to the adoption of new
technologies, and the average productivity of firms. All countries share a common
world technology frontier, which captures the global state of knowledge.

Technology and production. Technology is non-rivalrous and is modeled by an
exogenous set of production techniques and the corresponding cost function. Techno-
logical progress is exogenous and described by the technology frontier z̄t, which grows
at a rate g, such that z̄ = z̄0e

gt in period t. Firms j choose technology zj,t at the
3The mass of households is normalized to unity and aggregate values are interpreted as per capita.
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beginning of each period t.4 To adopt technology zj,t a firm j with current technology
zj,t−1 must hire x units of labour given by:

x(zj,t, zj,t−1) = ξ
π

z̄t

∫ zj,t

zj,t−1

(
ẑ

z̄t

)ξ−1

dẑ = π

[(
zj,t
z̄t

)ξ
−
(
zj,t−1

z̄t

)ξ]
, (1)

where π ≥ 1 is a country-specific parameter that captures aggregate barriers to
adoption and ξ > 1 is the curvature of the cost function.5 The aggregate barrier π
acts as a stand-in for any residual factors that delay technology adoption (e.g. patent
laws, trade barriers or human capital).

The functional form assumed for technology adoption costs follows Parente and
Prescott (1994) (see also Comin and Hobijn, 2010). The cost function can be inter-
preted as a continuum of distinct technologies that are ordered by their net benefit to
firms. For example, this could capture sequential technologies (e.g. adopting comput-
ers before email) or a pecking order of distinct unrelated technologies (e.g. adopting
computers before just-in-time manufacturing practices). In this regard, firms do not
need to repay for technologies they have already adopted and the cost of adopting
newer technologies is independent from the firm’s previous adoption. Technological
progress through growth in z̄t then both captures the introduction of new technolo-
gies as well as the decline in the cost of existing technologies. Appendix E shows that
the quantitative results are identical when next period technology is chosen and the
curvature of the cost function is on the change in technology ((zj,t+1 − zj,t)/z̄t)ξ̃ rather
than the level of technology.

Firms differ in a component sj,t of productivity, which I refer to as the firm’s ability.
The value of sj,t could be thought of as capturing the ability of the manager of firm j.
In addition to technology, firms choose to employ production labour nj,t to produce

4Changing the technology choice decision’s timing does not significantly affect the results. The
timing convention chosen is done to align the decisions made by the entering and incumbent firms.

5Setting the costs in terms of labour, as opposed to output, is primarily for consistency with
the entry cost and does not substantially affect the results. Mechanically, labour costs have two
affects on the economy. First, some fraction of the labour will be used for adoption and not used
for production. This fraction is constant for all economies along the balanced growth path (BGP)
equilibrium and so it does not affect the quantitative results. Second, the wage rate grows at rate g
along the BGP causing technology adoption to be more expensive. This is identical to the common
assumption in the technology adoption (e.g. Parente and Prescott, 1994) and innovation (e.g. Akcigit
and Kerr, 2018) literatures that scale investment costs by productivity (in this case z̄t) in order to
achieve stable growth.
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output.6 Output of firm j is given by:

yj,t = (zj,t(Asj,t)1−ω)1−γnγj,t, (2)

where γ ∈ (0, 1) determines the output share of labour and ω = 1/ξ is a scaling term
for algebraic convenience. Since A and sj,t do not have natural units, scaling this
term by 1 − ω does not affect the results. The term A is a productivity shifter that
affects all firms equally and can be thought of as a residual measure of cross-country
productivity differences that are not explicitly modeled.

Entry and exit. At the end of each period, firms face an exogenous probability
λ ∈ [0, 1] of exiting. A mass ME,t of new firms enter at the beginning of the period by
hiring ME,tcE units of labour. After entering, firms draw an ability s ∈ S from distri-
bution µ(s), which is constant throughout the firm’s lifetime. Firms enter with zero
technology, zj,t−1 = 0, and immediately adopt a technology, zj,t, through investment.7

The mass of firms in the economy in the period t depends on the firms that do not
exit in the previous period (1 − λ)Mt and the entry of new firms ME,t. The mass of
firms evolves according to:

Mt+1 = (1− λ)Mt +ME,t. (3)

Households. Household preferences are given by:

U({Ct}∞t=0) =
∞∑
t=0

βt logCt. (4)

Households supply one unit of labour inelastically as production workers (NP,t =
Mt

∫
j nj,tdj), in the establishment of new firms (NE,t = cEME,t) and in the adoption

of new technologies (NX,t =
∫
j xj,tdj).

6The model abstracts from capital as a production input. Extending the model to include capital
is equivalent to setting n = kα`1−α, for capital k and labour `, and does not change the main
relationships between institutional distortions and technology adoption. Further, the inclusion of
capital does not change the quantitative implications of the model if the results are interpreted as
changes in total factor productivity, as opposed to output-per-worker.

7This assumption does not affect the results because, as I show below firms choose their optimal
technology independently of zj,t−1 in equilibrium. This implies that the setting the entry value of
zj,t−1 is quantitatively equivalent to changing the entry cost through cE .
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2.2 Market Structure and Institutional Distortions

Firms are perfectly competitive and produce a homogeneous good, which is taken
as the numeraire. Institutional distortions are modeled as an idiosyncratic tax τ

on firm revenues, as in Restuccia and Rogerson (2008), that act as a stand-in for
institutions that reallocate factors of production across firms.8 Some examples of
distortions include hiring or firing constraints, credits constraints, or weak property
rights (Hopenhayn and Rogerson, 1993; Buera et al., 2011; Akcigit et al., 2021). The
government redistributes the tax revenues from the idiosyncratic taxes through a
non-distortionary lump-sum transfer Tt to households.9

I follow Hopenhayn (2014) and define an institutional distortion as θ = (1−τ)1/(1−γ)

to simplify algebra since this expression appears in many of the equilibrium results.
A firm j with distortion θj earns profits

θ1−γ
j yj − wnj − wxj, (5)

where nj and xj are production and adoption employment and w is the wage rate.

Definition 1. A system of institutional distortions (ψ,Θ) consists of a set of poten-
tial distortions Θ and a conditional probability distribution ψ(θ|s) that describes the
probability a firm with ability s receives distortion θ.

Definition 1 describes the institutional environment of the economy. Firms draw a
permanent institutional distortion θ at entry after ability s is determined. The struc-
ture of distortions is flexible and can accommodate a range of institutional policies.
While the distortion is modeled as depending on a firm’s ability s, it is straightfor-
ward to map this relationship into how the distortions relate to the size of the firm
as measured by n or y. Looking ahead, the interpretation of institutional distortions
is such that a firm that receives a relative tax (below average θ) is allocated compar-
atively fewer resources while a firm that receives a relative subsidy (above average θ)
is allocated comparatively more resources than in an undistorted economy. Misallo-

8The tax τ should not necessarily be thought of as a corporate tax in the model or calibration.
This is because these taxes tend to be on profits and apply equally to firms. On its own, this implies
that firms do not have an incentive to reduce their size to avoid taxation.

9The model results are not affected by the average level of 1 − τ , such that there is always an
equivalent system of distortions that would balance the government’s budget with Tt = 0. Given
this, I abstract from any financing or revenue concerns related to the idiosyncratic taxes by assuming
a lump-sum transfer.
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cation depends on the variation in institutional distortions θ rather than the average
value of θ.10

2.3 Equilibrium

I focus on the balanced growth path equilibrium in which all variables and prices
grow at constant rates. To simplify notation, I drop the t subscripts where it does not
cause confusion and denote the prior period (t− 1) with subscript −1. I also refer to
firms using by their type (s, θ) rather than j.

Solving the household’s problem implies that standard Euler Equation given by
R = egC/β − 1, where gC is the growth rate of consumption.

Firm’s problem. The problem of a firm (s, θ) with previous technology z−1 is to
choose labour n and technology z to maximize firm value, given by:

v(s,θ)(z−1) = max
n,z

(zθ(As)1−ω)1−γnγ − wn− wx(z, z−1) + 1− λ
1 +R

v(s′,θ′)(z), (6)

Proposition 1 characterizes the firm’s value function and optimal choices of production
labour and technology.11 Distortions affect the economy through firm-level choices of
both labour and technology.

Proposition 1. Define the normalized value of technology as ϕ = (z/z̄)ξ and the
normalized wage rate as w̄ = w/z̄1−γ. The value of a firm (s, θ) with prior technology
z−1 is equal to v(s,θ)(z−1) = wv̄(s,θ)(ϕ−1) where:

v̄(s,θ)(ϕ−1) = A
1− ω
1−D

ω ω
1−ω (γ

γ
1−γ (1− γ))

1
1−ω

(π(1−De−ξg))
ω

1−ω

 (w̄)−
1

1−ω
1

1−γ θ
1

1−ω s+ πe−ξgϕ−1, (7)

where D = 1−λ
1+Re

gw is the effective discount rate of firms and gw is the growth rate of
10Policies that uniformly affect firm technology use would show up in aggregate barriers π and not

the distortions θ. For example, the innovation literature shows that market power increases R&D
spending by allowing firms to profit from their innovations. If market power was similarly used to
aid adoption it would show up as a reduction in aggregate barriers π rather than a higher distortion
θ.

11Proofs of all propositions are available in Appendix A.
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wages. The firm’s choices of labour and technology are characterized by:

n(s, θ) =
(
γ

w̄

) 1
1−γ

θϕ(s, θ)ω(As)1−ω and ϕ(s, θ) =
(
z(s, θ)
z̄

)ξ
= ηθ

1
1−ω s, (8)

where η = A

[
ω(1−γ)γ

γ
1−γ

π(1−De−ξg)

] 1
1−ω

(w̄)−
1

1−ω
1

1−γ .

The equilibrium value of a firm in (7) has two components. The first term describes
the expected discounted stream of expected profits. The second term describes the
value of the firm’s current technology, described by technology proximity ϕ−1.

The firm’s technology proximity ϕ(s, θ) is a stationary measure of firm technology
that scales the firm’s technology z(s, θ) by the technology frontier z̄. Proximity is a
convenient measure because it does not depend on the technology frontier z̄ and has a
stationary distribution. The term η can be interpreted as a country-specific technology
index that captures the relative suitability of the country’s aggregate factors (e.g.,
productivity, wage, aggregate barriers) for technology adoption.

A newly created firm enters the economy with zero prior technology, ϕ−1 = 0 and
a random type (s, θ). The normalized expected value of a new firm is given by:

v̄E =
∫
S×Θ

v̄(ŝ,θ̂)(0)h(ŝ, θ̂)dŝdθ̂ − cE, (9)

where h(s, θ) = ψ(θ|s)µ(s) is the joint distribution of ability and distortions. In
equilibrium, the cost of entry must be at least as great as the expected value of a
new firm (v̄E ≥ 0) and equal (v̄E = 0) on the balanced growth path equilibrium
where entry is strictly positive. Distortions affect the entry condition through both
the expected value of entry and the wage rate, through general equilibrium effects.

Market clearing. Market clearing requires that both the output and labour mar-
kets clear. Output is only used as consumption by the household, such that the goods
market clearing condition can be written as:

C = Y = M
∫
S×Θ

(z̄ϕ(ŝ, θ̂)ω(Aŝ)1−ω)1−γn(ŝ, θ̂)γh(ŝ, θ̂)dŝdθ̂. (10)

Labor has three uses in the economy. First, labor can be employed by firms
in the production of the final good, NP = M

∫
(s,θ) n(s, θ)dsdθ. Second, labor can
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be employed by firms to invest in next technology, NX = M
∫

(s,θ) πϕ(s, θ) − (1 −
λ)M

∫
(s,θ) πe

−gξϕ(s, θ). The first term is total investment that would be needed for all
firms to reach the value of technology ϕ(s, θ) in Proposition (1) while the second term
subtracts the technology that incumbent firms already use from the previous period,
since firms do not need to double pay for technology. Third, labor can be used in the
creation of new firms, NE = λcEM . Putting this together, the labor market clearing
condition is:

1 = M
[∫
S×Θ

[
n(ŝ, θ̂) + π(1− e−gξ(1− λ))ϕ(ŝ, θ̂)

]
h(ŝ, θ̂)dŝdθ̂ + λcE

]
, (11)

where the left-hand side is the total supply of labour, which is normalized to one.

Equilibrium definition. Definition 2 introduces the equilibrium concept.

Definition 2. Given the initial distribution of productivities µ(s) and a system of
distortions (ψ,Θ), a balanced growth path equilibrium is the set of values:

{w̄, R, C, n(s, θ), ϕ(s, θ),M,ME, v̄(s,θ), v̄E, T, gM , gw, gC}

for all values of (s, θ), such that: (i) the household’s Euler Equation is satisfied; (ii)
firm value v̄(s,θ)(ϕ−1) is given by (7); (iii) the values n(s, θ) and ϕ(s, θ) are set as in
(8); (iv) the entry value v̄E is given by (9) and is equal to zero; (v) the mass of firms
satisfies (3); (vi) the government budget is balanced; (vii) The goods market and the
labor market clear, satisfying (10) and (11).

2.4 Equilibrium Characterization

Proposition 2 characterizes the solution to the balanced growth path equilibrium in
Definition 2. For brevity, the proposition does not report the values of labor n(s, θ)
or proximity ϕ(s, θ)—the expressions follow from (8) and the wage rate in (13)—or
the lump-sum government transfer T .

Proposition 2. A balanced growth path equilibrium exists and is unique. The equi-
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librium is characterized by

C = Y = ζYM

(
z̄A1−ω

πω

)1−γ
 ∫

S×θ θ̂
γ+ ω

1−ω ŝh(ŝ, θ̂) dŝ dθ̂(∫
S×Θ θ̂

1
1−ω ŝh(ŝ, θ̂) dŝ dθ̂

)γ+ω(1−γ)

 , (12)

w = ζw

(
z̄A1−ω

πω

)1−γ [∫
S×Θ

θ̂
1

1−ω ŝh(ŝ, θ̂) dŝ dθ̂
](1−γ)(1−ω)

, (13)

where ζY =
(

γ
1−γ

)γ (1−D
1−ω

)γ+ω(1−γ) (
ω

(1−De−ξg)

)ω(1−γ)
and ζw =

[(
1−ω
1−D

)1−ω
(
ωω(γ

γ
1−γ (1−γ))

(1−De−ξg)ω

)]1−γ

.

The growth rate of output and wages are given by gw = gY = ln Yt+1− ln Yt = (1−γ)g
and the interest rate is R = e(1−γ)g/β − 1. The mass of firms M is constant, gM = 0,
and given by

M =
[(1−D

1− ω

) [
γ

ω(1− γ) + 1− e−ξg(1− λ)
1−De−ξg

]
+ λce

]−1

. (14)

The mass of entrants is equal to ME = λM .

The undistorted economy is a special case of Proposition 2 in which all firms draw
the same distortion θ (e.g., θ = 1). The equilibrium does not depend on the average
level of distortions θ in that uniformly increasing θ has no affect on the allocations
or aggregate output, due to offsetting general equilibrium adjustments to the wage
rate w. It also follows from the proposition that distortions affect the economy only
through the aggregate productivity level and not through the aggregate growth rate.

Growth in output and wages are both driven by growth in the technology frontier
z̄, which allows firms to employ better technologies, with the same proximity, at the
same cost. Output and wages are also both decreasing in aggregate barriers π and
increasing in both the productivity shifter A and the average ability s. Wages depend
on the distortion-weighted ability, where distortions enter the expression with the
same form as with firm-level labor demand (Proposition 1). This implies that wages
will be higher when more productive firms have larger distortions and employ more
workers (Recall that wages are increasing in the average value of distortions).

The impact of misallocation on output (in square brackets) depends on the the ra-
tio of distortion-weighted average ability. In the undistorted economy, this expression
simplifies to the average ability s to the exponent (1− ω)(1− γ), the same exponent
on ability in the production function. The expressions provides an important insight
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into the interactions between distortions and technology adoption on aggregate pro-
ductivity. The expression in square brackets nests the TFP impact of misallocation
in the canonical model of misallocation (for example, Restuccia and Rogerson, 2008;
Hsieh and Klenow, 2009) for the case where ω → 0, which can be thought of as the no
technology case. Technology adoption amplifies dispersion in distortions θ increasing
the scope for misallocation.

Finally, the proposition shows that the mass of firms is stationary and does not de-
pend on the technological frontier z̄, the productivity shifter A, the aggregate barriers
π, or the distribution of firm types (s, θ). This implies that changes in the system of
distortions only affect the economy through reallocations across firms.

Aggregation. The previous results show that aggregate outcomes depend on the
joint distribution of distortions and ability. Proposition 3 shows that despite the
complexity of adding firm heterogeneity and institutional distortions, the model yields
the same aggregate implications as a representative firm model.

Proposition 3. Aggregate output is equivalent to a representative firm economy with
mass M firms, a fixed labor cost λce, aggregate barrier πrep = π, and representative
firm (srep, θrep) with productivity

srep =


∫
S×θ

[
θ̂γ+ ω

1−ω ŝ
]
h(ŝ, θ̂) dŝ dθ̂(∫

S×Θ θ̂
1

1−ω ŝh(ŝ, θ̂) dŝ dθ̂
)γ+ω(1−γ)


1

1−ω
1

1−γ

and distortion θrep = 1. Aggregate output can be written as:

Y = My(srep, θrep) = M
[
z̄ϕ(srep, 1)ω(Asrep)1−ω

]1−γ
n(srep, 1)γ. (15)

Proposition 3 shows that the model aggregates to a neoclassical growth model
with technology adoption, nesting Parente and Prescott (1994), whereas the previ-
ous results show that the model nests a static misallocation model along the lines
of Restuccia and Rogerson (2008). There are two main payoffs for combining these
frameworks. First, as discussed in more detail in the calibration section, firm het-
erogeneity implies a gradual adoption of new technologies, which is used to identify
technology parameters in the data. Second, the inclusion of firm heterogeneity allows
for the impact of institutional distortions on technology adoption to be quantified.
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Institutional distortions are a natural explanation for the slow adoption of new tech-
nologies in developing countries, but cannot be studied from an aggregate perspective.
The quantitative section provides a bridge between measures of misallocation and ob-
served adoption lags.

2.5 Adoption

I use the model to examine the implications for the adoption path of new technologies
along the balanced growth path equilibrium. To start, I need to define a concept of
adoption in the model. I consider the simplest definition in which a firm j that
uses technology zj also uses every technology invented prior to zj (Definition 3).
Since technologies are ordered by their productivity this implies that firm j uses all
technologies z with zj ≥ z.

Definition 3. A firm j with technology zj has adopted a technology z if zj ≥ z.

I write the definition in terms of the unscaled technology z (rather than scaled
technology ϕ) since it highlights how new technologies become adopted. Over time,
firms adopt more advanced (higher z) technologies as growth in the technology frontier
z̄ lowers the cost of adoption. The definition is equivalent to stating that a firm (s, θ)
has adopted a technology with proximity ϕ if ϕ(s, θ) ≥ ϕ. An implication of the
model is that the distribution of technologies across firms can be reframed in terms of
the distribution of proximity ϕ(s, θ), which is stationary along the balanced growth
path.12 On its own, the stationarity of proximity is not immediately beneficial since
both the firm’s technology z(s, θ) and proximity ϕ(s, θ) would require detailed data
on firm-level technology use to identify. However, I show next that the distribution of
proximity ϕ(s, θ) implies a distribution of adoption lags, denoted L(s, θ), which can
be mapped directly into observable data. This is a key property of the model and
is used to identify the cost function of investment—the aggregate barriers π and the
cost curvature ξ—in the calibration.

I define the optimal adoption lag L(s, θ) for firm (s, θ) as the number of periods
following a technology’s creation and its adoption by firm (s, θ). While adoption lags

12The cost structure assumed in (1) implies that firms immediately adopt technology up a specific
value of ϕ regardless of their previous technology level. Appendix E considers an alternative cost
function in which the curvature on the cost function is on the change in technology (zj,t − zj,t−1)
rather than the level of technology. In this environment, I show that average scaled technology of
firm types (s, θ) is constant over time. This leads to similar aggregate implications.
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are stationary, firms eventually adopt all technologies as growth in the technology
frontier z̄ lowers the cost of existing technologies z by enough for firms to profitably
adopt. The optimal adoption lag of a firm is given by:

L(s, θ) = − 1
gξ

ln
[
ηθ

1
1−ω s

]
. (16)

The adoption lag is falling in the firm’s proximity, ϕ(s, θ) = ηθ
1

1−ω s, and the rate at
which the cost of technology declines, gξ. The importance of (16) is that it allows
the cross-section of firm technologies to be mapped to and from the distribution of
adoption lags. This implies that the cross-sectional distribution of technologies used
by firms can be recovered from aggregate time-series data on adoption. This mapping
is further explored in Section 3. Proposition 4 summarizes the main comparative
statics with the firm-level adoption lag and key variables.

Proposition 4. Adoption lags do not depend on aggregate productivity and are in-
creasing in aggregate barriers:

dL(s, θ)
d lnA = 0; (17)

dL(s, θ)
d ln π = − 1

gξ

d lnϕ(s, θ)
d ln π = 1

gξ
> 0. (18)

Firms with higher ability (higher s) and institutional distortions (higher θ) adopt
technologies earlier:

∂L(s, θ)
∂ ln θ = − 1

gξ

∂ lnn(s, θ)
∂ ln θ = − 1

gξ

1
1− ω < 0; (19)

∂L(s, θ)
∂ ln s = − 1

gξ

∂ lnn(s, θ)
∂ ln s = − 1

gξ
< 0. (20)

For aggregate factors, adoption lags are not affected by the productivity shifter,
A, and are increasing in aggregate barriers to adoption, π. Uniformly increasing firm
productivity raises the profitability of firms leading firms to demand more labour,
increasing the wage rate. The increase in the wage exactly offsets the increase in
incentives to adopt, resulting in no change to adoption.13 The increase in aggregate
barriers, π, causes the overall cost of adoption to increase relative to the wage rate

13It is straightforward to show that uniform increases in the average institutional distortion θ
similarly has no affect on adoption lags.
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leading to firms investing less in technology adoption. Since aggregate barriers affect
all firms equally, and there is no interaction with institutional distortions θ, the impact
of aggregate barriers is to shift the adoption curve to earlier or later periods. Given
this, I use the aggregate barriers π as a residual measure of technology across countries
in the quantitative model.

Adoption lags are decreasing in the ability s and the institutional distortion θ of
a firm. Increasing either s or θ makes firms more profitable incentivizing investment
in the adoption of new technologies. The insight from Proposition 4 is that the im-
pact of institutional distortions on the time-series adoption lag can also be understood
through the impact of institutional distortions on the cross-sectional firm size distribu-
tion. The empirically relevant case are institutions that compress the size distribution
by lowering employment at productive firms. These institutions will also tend to delay
adoption by disincentivizing otherwise early adopters. For example, many policies no-
tably limit firms from growing beyond a certain size in terms of employment, such as
employment thresholds for taxes or competition from state-owned enterprises. These
policy would then also delay the initial adoption of new technologies because they
limit incentives for firms to adopt new technologies as firms are unable to fully realize
the benefits of the adoption costs. The quantitative exercise measures how important
this channel is for explaining cross-country technology differences.

3 Calibration

The benchmark economy is calibrated to replicate features of the United States’ data
on the distribution of firm sizes, distortions and technology adoption. I first match
the distribution of firm types (s, θ) using estimates of institutional distortions and
the firm size distribution. Given this distribution, the model implies an adoption
curve, which can then be used to determine the technology cost curvature ξ. Section
4 quantifies the effect of changing institutional distortions and aggregate barriers
on technology and aggregate productivity. Institutional distortions and technology
barriers are disciplined using cross-country empirical evidence on misallocation and
technology adoption lags.
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3.1 Benchmark Economy

The benchmark economy calibration consists of setting values for the parameters
{γ, g, λ, β, ce, ξ, ω} and the distributions of distortions and firm ability. Average pro-
ductivity A, technology barriers π and the technology frontier z̄ are normalized as
their level does not affect the results. Table 1 summarizes the calibrated parameters.

Table 1: Benchmark Calibration

Parameter Value Target
Discount Rate β 0.98 Interest Rate
Labour Share γ 0.67 Labour Share
Technology Growth g 0.02 TFP Growth Rate
Exit Probability λ 0.07 Establishment Exit Rate
Cost Function Elasticity ξ 2.47 90-10 Lag

ω 0.40 Implied by ξ

Firm Productivity {s} [1 , 267224] Firm-Employment Distribution
Productivity Distribution µ - Firm-Employment Distribution
Elasticity of Distortions ρBE 0.09 Elasticity of TFPR w.r.t. TFPQ
Dispersion of Distortions σBE 0.25 Standard Deviation of TFPR

Notes: The values of A, z̄, πBE, and cE are normalized to one in the benchmark economy.

Preliminaries. I set the discount rate β = 0.98 to correspond to a yearly interest
rate of around 4%. The growth rate of the technology frontier is set to g = 7.2% to a
match an output-per-capita growth rate of 2.41%, which is the productivity growth
rate reported by Aghion et al. (2019). I set the coefficient on labour to be γ = 0.66 to
be consistent with the labour share of output. Along with the value of ω, the return
on firm ability is (1−ω)(1− γ) = 0.22, which falls in the range that is typically used
in the literature (for example, Restuccia and Rogerson, 2008).

Distortions. Following Bento and Restuccia (2017) and Guner et al. (2018), the
system of distortions is generated by:

ln(1− τ(θ)) = −ρ ln s+ ε, (21)

where τ(θ) is the implicit tax rate implied by the distortion θ, ρ is the elasticity
of distortions with respect to ability s, and ε ∼ N (0, σ) is a random component of
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the distortion that does not depend on the firm’s ability s. Higher correlation ρ cause
higher ability firms to be taxed more leading to a reallocation from high ability s to low
ability s firms. Although this functional form abstracts from specific institutions, it is
straightforward to see how they would map into (ρ, σ). For example, size-dependent
employment laws or taxation would correspond to higher ρ.14 The average value of
distortions is not directly targeted since it does not affect the allocation of resources,
aggregate productivity, or technology adoption.

Empirical studies generally focus on the relationship between total factor quantity
productivity (TFPQ) and total factor revenue productivity (TFPR). TFPQ measures
how efficiently firms transform inputs into output. In the model, TFPQ is given by:

TFPQ(s, θ) =
(
z(s, θ)s1−ω

)1−γ
. (22)

Measured TFPQ then depends on both firm ability s and the firm’s distortion θ,
through its affect on technology choice. In contrast, in models of static misallocation
(e.g. Restuccia and Rogerson, 2008; Hsieh and Klenow, 2009), TFPQ is fixed and so
distortions do not affect TFPQ.

Total factor revenue productivity (TFPR) is commonly used as a measure of in-
stitutional distortions. TFPR measures how efficiently firms transform inputs into
revenues. In the model, TFPR is given by

TFPR(s, θ) = y(s, θ)
n(s, θ) ∝

1
1− τ(θ) . (23)

Dispersion in TFPR measures the extent that firms differ in their abilities to generate
revenues, with higher dispersion indicating more misallocation.15 I target institutional
distortions (ρ, σ) to match moments on the joint distribution of TFPQ and TFPR.

The elasticity ρ is targeted to match the elasticity of TFPR with respect to TFPQ,
denoted as ELAS. There are two challenges to relating the measured elasticity ELAS
with the elasticity parameter ρ. First, technology implies that a firm’s TFPQ and

14While the wedge τ(θ) is modeled as depending on s, its relationship with other variables are
directly implied through (21). For example, the elasticity of the wedge with respect to labour is equal
to −ρ(1−ω)(1−γ)

1−ρ(1−ω)(1−γ) . In this regard, the elasticity can capture policies that are not directly related with
the firm’s ability s.

15This implicitly assumes that production labor n is reported in the data and not researchers x. The
implications for TFPR are the same if the denominator is instead total labor (n(s, θ)+x(s, θ, ϕ(s, θ)))
or the Cobb-Douglas composite ((ϕω(1−γ)nγ)1/(γ+ω(1−γ)).
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TFPR both depend on its institutional distortion creating a mechanical relationship
between the two values. Second, TFPQ is a model-based measure implying that ELAS
may differ depending on the model used to construct it. Proposition 5 summarizes a
mapping that corrects for these two challenges.

Proposition 5. Define ELASi as the measured elasticity between TFPR and TFPQ
in country i. The elasticity ρi in (21) that implies this relationship is equal to:

ρ = Γ1

[ 1
ELAS + ω

1− ωΓ2

]−1
(24)

where Γ1,Γ2 > 0 are parameters that depend on the empirical model.

Proposition 5 shows that the implied elasticity ρ is smaller than in static models
without technology, where ρ = Γ1ELAS. Consequently, ignoring technology adoption
implies that the severity of institutional distortions is overstated by measured elastic-
ity. This result helps explain why specific institutional distortions are often unable to
explain the full magnitude of indirect measures of misallocation (as noted by Restuc-
cia and Rogerson, 2013). The proposition does not imply that the measured gains
from reallocation are lower compared with static models, since the first-best static
allocation must also be feasible with technology adoption.

I target an elasticity of ELASBE = 0.13, which is in the range of values reported by
Bils et al. (2020) and implies ρBE = 0.09.16 Given ρBE, the dispersion of distortions
is set to σBE = 0.25 to match a standard deviation of log(TFPR) of 0.31, which is
US value reported by Hsieh and Klenow (2009) after the Bils et al. (2020) correction
for measurement error. I assume that the US is distorted as it provides a reasonable
benchmark for the minimum level of distortions that could be realistically attained
in other economies. While US moments may reflect institutional frictions, they may
also reflect unavoidable factors (e.g. measurement error, random business shocks).

Finally, it is worthwhile to note that aggregate barriers π do not affect the mea-
sured relationship between TFPQ and TFPR since aggregate barriers affect all firms
equally and only through TFPQ. This implies that country-specific factors that affect
technology adoption but do not cause resource reallocation will not be captured in

16The correction terms Γ1 and Γ2 in Proposition 5 account for differences between the model used
here and the empirical model used to construct measured elasticity ELAS. To compare with Hsieh
and Klenow (2009) Γ1 = ν/(ν − 1)2 = 3/4 and Γ2 = (ν − 1)/ν = 2/3 where ν = 3 is the CES
parameter.
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the measures of institutional distortions.17

Firm size distribution. Given the calibrated institutional distortions, the distri-
bution of productivities can be disciplined using the distribution of firms sizes. The
relative employment of two firms (s, θ) and (s′, θ′) is given by:

n(s, θ)
n(s′, θ′) = θz(s, θ)s1−ω

θ′z(s′, θ′)s′1−ω = θ
1

1−ω s

θ′
1

1−ω s′
.

This implies a mapping between the firm size distribution (measured in employment)
and the ability distribution µ(s) for firm ability S = {s1, s2, ..., s1,000}. I use the
establishment size distribution from the Business Dynamic Statistics (BDS) database
to construct the empirical distribution (see Figure 1a).18

Technology. The technology cost function has two components: the aggregate bar-
rier πBE that determines the level of the cost function and the curvature ξ of the
cost function, which also determines ω. I normalize πBE and interpret the values of
aggregate barriers π in other economies relative to the US.

The ideal target for the curvature of the cost function ξ is the elasticity between a
firm’s measured productivity (TFPQ) and technology choice (measured by proximity
ϕ): d ln TFPQ

d lnϕ = 1−γ
ξ
. However, the firm’s choice of technology is not easily observed.

Instead, the model suggests that the relative timing of adoption as an alternative
measure. With this in mind, the curvature ξ is set to match the length of adoption in
the United States measured by the 10-90 lag, which is the time between a technology
being used in 10% of production and 90% of production. The assumption is that the
main driving force of adoption of a long period is the relative cost and benefits of the
technology. Proposition 6 characterizes the relationship between the 10-90 lag, the
cost curvature ξ, and observables.

Proposition 6. Let n10 and n90 be the employment of the marginal firms, ordered by
output, that produce the bottom 10% and 90% of output. The number of periods for a

17This holds even if the model is extended to allow for firm-specific technology barriers since
barriers affect TFPQ and not TFPR.

18I set nodes such that the log distance between nodes is equal, which results in more nodes at lower
productivities. Within nodes, productivities are set to be uniformly distributed. For the calibration
of firm sizes, distortions are drawn from (21) with ρ equal to the value in Table 1 and σ = 0. This
allows for a clean mapping from the data to the model and is equivalent to the assumption that σ
captures measurement error.
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Figure 1: Calibration of Productivity and Technology
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Notes: Figure (a) plots the cumulative firm distribution by employment in the data and the
calibrated model. Figure (b) plots the adoption curve implied by the calibrated model and the
adoption curve of tractors in the data, which is not targeted in the calibration. Adoption
(%) measures the fraction of total output produced by firms using technology introduced in
period 0. Data on tractors measures the fraction of output produced by farms using tractors
and is rescaled to 1 at the end of sample (see Chen (2020) for additional details).

technology to go from being used in 10% of production to 90% of production is:

10-90 Lag = lnn90/n10

gY

1− γ
ξ

. (25)

The 10-90 lag in (25) is found by comparing the adoption lags of firms using
L(s,θ) in (16). The 10-90 lag is increasing in the size dispersion of firms (n90/n10)
and decreasing in the growth rate gY and technology cost curvature ξ. Intuitively,
increasing the dispersion of firm sizes implies larger dispersion of technology use
across firms while increasing the growth rate or cost curvature implies that the cost
of existing technologies decline more rapidly.

I target a 10-90 lag in the benchmark economy of 40 years in order to match the
midpoints of lags for a wide range of technologies, rather than focusing on a specific
technology. In a comprehensive study, Grubler (1991) finds an average 10-90 lag of 41
years for several hundred technologies. Other reports of 10-90 lags include: 54 years for
steam locomotives and 25 years for diesel locomotives (Greenwood, 1999); 20 years
for Blast Oxygen Furnaces (Oster, 1982); an average of 15 years for 21 consumer
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goods (Jovanovic and Lach, 1997). The periods of electrification and computerization
reported by Jovanovic and Rousseau (2004) are also consistent with the adoption
length. Appendix C summarizes the sensitivity of the results to the cost curvature ξ.

Along with the choice of the 10-90 lag, I set the growth rate gY and the labour
coefficient γ as discussed above. I set n90/n10 = 1, 169 using the employment dis-
tribution implied by the BDS data (from Figure 1a).19 Together, this implies a cost
curvature of ξ = 2.47, which is close to values used in the literature. Parente and
Prescott (1994) find a cost curvature of 1.8 using convergence in post-war Japanese
growth. While not directly comparable, the curvature is also close to the R&D cost
curvature of 2 typically used in the innovation literature (Akcigit and Kerr, 2018).

Figure 1b graphs the adoption curve in the benchmark economy. While the 10-90
lag is chosen to be consistent with a large range of technologies, I graph the adoption
curve for tractors to provide a concrete comparison and external validation.20 The
figure shows that not only does the model fit the adoption length of tractors, the
model replicates the S-shaped pattern of adoption, which is also a characteristic of
other technologies (for example, hybrid corn in Griliches, 1957).

3.2 Cross-Country Moments

The quantitative analysis examines the impact of institutional distortions and ag-
gregate barriers on cross-country technology and productivity differences. I calibrate
economies i that differ from the benchmark economy in terms of the elasticity of
distortions ρi and aggregate barriers πi. Each economy i is disciplined to match mo-
ments of countries based on relative output-per-capita Yi/YUS in the data.21 Figure
2 summarizes the model and data moments used to calibrate the parameters and
Appendix D reports the corresponding values of ρi and πi.

Institutional distortions. The elasticity ρ of distortions with respect to a firm’s
ability is the fundamental driver of cross-country differences in distortions. That is,
distortions in less developed countries tend to be more targeted to productive or

19This assumes that the output distribution of firms is the same as the employment distribution,
which will tend to hold in low distortion economies, but may not be exact. The calibrated model
implies a 10-90 lag of 40 years in the benchmark economy showing this is a reasonable approximation.

20I thank Chaoran Chen for providing and helping with data on tractors used in Figure 1b. For
additional details on the construction of the data see Chen (2020).

21Data for output-per-capita is from the Penn World Tables 9.1 for 2002.
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Figure 2: Calibration of Productivity and Technology
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Notes: Panel (a) plots the model implied elasticity of TFPR and TFPQ against empirical
moments constructed using data from the World Enterprise Survey. Output-per-capita is
from the Penn World Tables 9.1. Panel (b) plots the data and model implied technology
adoption lags. The empirical value is the estimated country-level average adoption lag rela-
tive the US from Comin and Hobijn (2010). The model implied technology adoption lag is
constructed as the number of periods, relative to the benchmark economy, it takes for the
economy to produce 10% of output with a new technology.

large firms (see Hsieh and Klenow, 2009; Bento and Restuccia, 2017). I estimate the
empirical elasticity of TFPR with respect to TFPQ using the World Bank Enterprise
Survey following Bento and Restuccia (2017), where country estimates are reported
in Figure 2a.22 The elasticity for an economy i is given by:

ELASi = 0.275− 0.171 ln
(
Yi
YUS

)
− 0.023

[
ln Yi
YUS

]2
. (26)

Relative to a linear fit, the quadratic function implies lower values of elasticities for
high income countries and does not substantially alter the estimates for low income
countries. The intercept implies that the elasticity for an economy with output-per-
capita equal to the US will be 0.275, which is larger than in the benchmark economy.
Intuitively, this could reflect that wealthy European economies experience some de-

22All countries with fewer than 100 observations or with population less than 1 million are dropped
from the sample. For comparability, the estimates of TFPR are constructed using the model structure
in Bento and Restuccia (2017), which follows Hsieh and Klenow (2009). Equation (24) is used to
construct the values of ρi from ELASi.
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gree of size-dependent distortions beyond the US. The calibrated elasticities range
from 0.275 to 0.596 in the most distorted economies, which is consistent with esti-
mates found using higher quality micro data (see Appendix B). Figure 2a graphs the
estimated elasticities for each economy along with the quadratic fit given in (26).
The value of ρi is inferred using (24). The value of σi is held at the US level, which,
along with the higher values of ρi, implies a higher value of the standard deviation of
log(TFPR) and is consistent with empirical evidence (see Appendix B).

Aggregate barriers. A higher aggregate barrier π increases the cost of technology
adoption to all firms resulting in delayed adoption (see Proposition 4). Aggregate
barriers π are calibrated as a residual component of technology lags that cannot be
explained by distortions. I define the adoption lag for economy i as the number of years
between when economy i and the US benchmark economy produce 10% of output
with a new technology.23 I target estimates of adoptions lags from Comin and Hobijn
(2010) who estimate the average adoption lags using a broad range of technologies
(e.g., railways, cars, PCs) for each country.24 Figure 2b reports the adoption lags for
each country in the data and the implied adoption lags in the calibrated model.

Comin and Hobijn (2010) and Comin and Mestieri (2018) find that adoption lags
have declined for newer technologies. For example, computers and the internet dif-
fused more rapidly across countries than railways or steam ships. Targeting πi to
shorter adoption lags would imply smaller aggregate barriers πi and a larger relative
importance of institutional distortions for delaying technology adoption.

Discussion. Before moving to the quantitative results, I discuss the moments that
are not included in the calibration and their potential impact on the model.

23The choice to measure adoption at 10% of output produced accounts for limitations in the data.
Specifically, data may not be recorded in early periods of a technology’s adoption leading to some
bias in the adoption lags. It is unclear that this is an issue in Comin and Hobijn (2010) as they use a
model to infer the adoption lags for countries. Using earlier points of adoption (e.g. first firm to use
the new technology) would place a greater weight on higher ability s firms increasing the importance
of institutional distortions in the quantitative analysis.

24Comin and Hobijn (2010) estimate adoption lags for country-technology pairs using a structural
model and then decompose the adoption lag into a country- and technology-specific components. I
use their estimates for the country-specific adoption lag as the target for aggregate barriers in the
calibration. This allows for a country’s technology lag to be captured more robustly than if a single
technology were to be used.
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• Productivity A: It would be straightforward to calibrate Ai to match residual
differences in output-per-capita across countries. However, Proposition 4 shows
that Ai does not affect technology adoption.

• Ability Distribution µ(s): I assume the cross-country ability distribution µ(s)
is fixed. The average value of firm ability does not affect the results (by the same
argument as A) and the distribution of µ(s) does not affect the measurement
of any of the key model parameters, such as ρ. Additionally, the choice to hold
µ(s) fixed does not imply that the firm size distribution (measured by either
employment or output) or TFPQ distribution are fixed. The firm size distribu-
tion is compressed in more distorted economies because of the higher elasticity
of distortions ρi, which is consistent with empirical evidence on the firm-size dis-
tribution (see, Adamopoulos and Restuccia, 2014; Poschke, 2018). The TFPQ
distribution is also compressed in more distorted economies because of technol-
ogy adoption. This is counterfactual to empirical evidence where TFPQ tends to
be more dispersed in low income countries (see Appendix B). Targeting µ(s) to
dispersion in TFPQ would increase the scope of institutional distortions in more
distorted economies, making the fixed distribution a conservative assumption.

• Entry Cost cE: The mass of firms Mi is constant across countries, which
contradicts evidence showing that firms are smaller in lower income countries
Bento and Restuccia (2017). This moment could be directly targeted through
country-specific entry costs cE. However, country-specific masses Mi would not
affect the main results since there is no interaction with institutional distortions
or aggregate barriers.

4 Quantitative Analysis

I use the calibrated model to quantify the extent that differences in institutional
distortions and aggregate barriers explain cross-country technology adoption lags and
aggregate productivity. I consider a counterfactual experiment in which either the
correlation of institutional distortions ρ, aggregate barriers π, or both are adjusted
in the benchmark economy to match the empirical evidence in Section 3.2. In this
regard, the experiment can be thought of as adjusting the institutional structure of
the US to match other countries. The gap between the benchmark and counterfactual
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economies then measure the relative importance of of institutional distortions and
aggregate barriers. I use the US as the benchmark economy, with (ρBE, σBE) > (0, 0),
as opposed to the hypothetical undistorted economy, with (ρ, σ) = (0, 0), to take
seriously the issue that not all institutional distortions can be removed in practice.
The results are divided between technology adoption and aggregate productivity.

4.1 Technology Adoption Lags

I focus primarily on the initial adoption lag as a measure of technology because it
is directly comparable with the estimates in Figure 2b. Relative to the benchmark
economy, the technology adoption lag can increase because either more correlated in-
stitutional distortions delay early adopters or aggregate barriers delay the adoption of
all firms. Figure 3 summarizes the results. By construction, the counterfactual econ-
omy with both institutional distortions and aggregate barriers matches the adoption
lag in the data (see Figure 2b) while the benchmark economy (not shown) has an
adoption lag of zero.

Figure 3: Counterfactual Adoption Lag
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Notes: The figure plots the relative adoption lag constructed as the number of periods between
10% of output being produced with a new technology in the counterfactual and benchmark
economies. Barrier + Dist. refers to the economy with parameters (ρi, πi). Inst. Distor-
tions refers to the economy with parameters (ρi, πBE). Barriers refers to the economy with
parameters (ρBE , πi). Other parameters are from Table 1.

The aggregate barrier line shows the benchmark economy with (ρBE, πi) and the
institutional distortion line shows the economy with (ρi, πBE). The technology adop-
tion lag of both channels (ρi, πi) is equal to the sum the technology adoption lag in
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the economies with only aggregate barriers (ρBE, πi) or only institutional distortions
(ρi, πBE) since there is no interaction between the two channels (Proposition 4). The
contribution of the individual channels, ρ or π, to the adoption lag is then equal to
the adoption lag in the economy with only that distortion.

Institutional distortions are important for cross-country technology adoption lags,
but the profile is relatively flat across countries. The contribution of institutional
distortions range from around 14 years, in high output-per-capita countries, to 17
years, in medium output-per-capita countries. The average contribution of institu-
tional distortions to the gap in technology adoption lags is around 60% and ranges
from one third in the lowest income countries to over 90% in the highest income coun-
tries.25 Despite the large effect of institutional distortions in lower income countries,
the overall contribution is smaller due to the larger base.

The delay in adoption from institutional distortions is driven by the higher corre-
lation of distortions ρ in lower income countries disincentivizing firms from adopting
new technologies because they lack sufficient scale or profitability to fully benefit from
new technologies. Starting from the benchmark economy, small increases in ρ have
relative large increases in the adoption lag because there is a high share of large early
adopters. At higher values of ρ, the marginal impact from increasing ρ on adoption
lags is small because there are fewer large early adopters and the firm distribution is
more egalitarian. The flatness of the institutional distortion channel is then due to
empirical elasticity of distortions implying that relatively high income countries are
comparatively more distorted than the US. For example, (26) implies that economies
with the same output-per-capita as the US would have around twice as high correla-
tion of institutional distortions.

The main takeaway from the experiment is that institutional distortions are im-
portant across the distribution of countries. Institutional distortions in relatively high
income economies provides a novel channel for of why European countries tend to lag
behind American countries in the adoption of new technologies.26 In low income coun-
tries, this channel helps explain why, despite the relative high productivity gains from
using newer technologies, adoption tends to be low.

25Calculated as the adoption lag in the economy (ρi, πBE) divided by the adoption lag in economy
(ρi, πi), which matches the average in the data by construction.

26See Comin and Hobijn (2010) for a broad set of evidence on technology adoption between the
economies. Similarly Bloom et al. (2012) examine the relatively slow adoption of IT in Europe
relative to the US.
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Technology distribution. The model also has implications for the distributions
of technology used across countries. I focus on two points, which I refer to as the
50th and 90th percentile adoption lags. The 50th (90th) percentile adoption lag is
defined as the number of periods between 50% (90%) of output being produced with
a new technology in the counterfactual and the benchmark economies. Figure 4 sum-
marizes the adoption lags as well as the effects of aggregate barriers and institutional
distortions.

Figure 4: Counterfactual Adoption Lag
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(a) Adoption Lag: 50th Percentile
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(b) Adoption Lag: 90th Percentile

Notes: The figure plots the relative adoption lag constructed as the number of periods be-
tween 50% (Panel a) and 90% (Panel b) of output being produced with a new technology
in the counterfactual and benchmark economies. Barriers + Dist. refers to the economy
with parameters (ρi, πi). Inst. Distortions refers to the economy with parameters (ρi, πBE).
Barriers refers to the economy with parameters (ρBE , πi). All other parameters are from
Table 1.

Comparing the adoption lags in Figure 4 with the previous figure shows that
the adoption of new technologies is relatively compressed in lower income countries,
matching evidence documented by Grubler (1991) that laggard countries tend to
adopt technologies faster. For example, in the most distorted economy the 10-90 lag
is around 10 years shorter than in the benchmark economy. The compression of the
technology distribution is driven by more correlated distortions (higher ρ) disincen-
tivizing high ability (high s) firms from adopting technologies. This similar explains
why the overall impact of institutional distortions is decreasing at the 50th and 90th
percentile adoption lags compared to the initial adoption lag. For low income coun-
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tries, institutional distortions account for 11 years of the 50% adoption lag and 8
years of the 90th percentile adoption lag.

Given that low ability (low s) firms tend to benefit from the higher elasticity of
distortions ρi in more distorted economies, the net effect on late adopters is am-
biguous. All else equal, low ability s firms should adopt earlier in highly distorted
economies because of beneficial distortions (higher θ) and lower wages, due to general
equilibrium effects. Despite this, Figure 4b shows that institutional distortions still
contribute to a positive gap for the 90th percentile adoption lag. This result can be
understood through two effects of increasing ρ on the marginal adopter, i.e., the firm
that produces the 90th percentile of output with the new technology. First, produc-
tion is highly skewed in the benchmark economy implying that the marginal adopter
is still relatively productive compared to the average firm, limiting the benefits that
the firm receives from higher ρ. Second, increasing ρ causes output to be spread more
equally across firms resulting in the marginal adopter in more distorted economies
to also have lower ability s. Together, these effects lead to a positive contribution of
institutional distortions to the 90th percentile adoption lag.

4.2 Aggregate Productivity

The previous results show that institutional distortions are an important driver of the
observed differences in cross-country technology adoption lags. The second part of the
experiment measures the productivity consequences of institutional distortions and
aggregate barriers. Aggregate productivity is endogenous in the model and depends
on both technology adoption and factor misallocation. Figure 5 reports the model
implied contribution of institutional distortions and aggregate barriers to the cross-
country productivity gap.27

The combination of institutional distortions and aggregate barriers have a sub-
stantial productivity cost with the relative productivity between the benchmark and
counterfactual economies ranging from 43% in high income countries to around 380%
in the lowest income countries. Both individual channels are also important through-
out the distribution. That said, the impact of institutional distortions tends to dom-
inate aggregate barriers because of its additional cost on productivity through the
misallocation of labour.

27Results for countries with output-per-capita close to the US in the data are not reported because
the small denominator causes the contribution to be very large.
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Figure 5: Counterfactual Productivity
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(a) Productivity Gap
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(b) Static and Dynamic Misallocation

Notes: Figure 5a reports the contribution of productivity gap in the model to the ob-
served productivity gap in the data. The contribution of for economy i is calculated as
[log(Yi/Li)− log(YBE/LBE)]/[log(Y data

i /Ldatai )− log(Y data
US /Y data

US )]. Barrier + Dist refers
to the economy with (ρi, πi). Inst. Dist. refers to the economy with parameters (ρi, πBE).
Agg. Barriers refers to the economy with (ρBE , πi). Results for the highest output-per-capita
counterfactual economies are not reported because of the small base. Figure 5b reports the
contribution of static and dynamic misallocation to the Inst. Dist. productivity gap in Figure
5a. Contribution is calculated change in productivity from static (dynamic) misallocation
divided by the total change in productivity from misallocation and is based on (27).

Aggregate barriers π act as a residual measure of technology differences in the
calibration. In this regard, the results highlight the potential gain from removing bar-
riers to technology adoption that are unrelated to institutional distortions. Aggregate
barriers range from explaining a productivity gap of around 1% in the highest income
countries to 115% in the lowest income countries, or around 20% of the observed gap
in output-per-capita. The results indicate that, even after accounting for institutional
distortions, aggregate technology barriers (i.e. those that affect firms equally) explain
an important fraction of cross-country productivity differences. However, the results
also indicate that policies designed to improve technology adoption through aggregate
channels, without remedying misallocation, will not improve productivity by as much
as suggested by technology adoption lags alone.

Institutional distortions account for a productivity gap of around 41% in high
income countries and 123% in low income countries, or around 20% of the observed
gap in output-per-capita. Institutional distortions are governed by the elasticity of
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distortions ρ such that a higher value of ρ causes more labour to be reallocated from
high ability (high s) firms to low ability (low s) firms. This is the classic misallocation
of resources. Similarly, there is also a “misallocation” of technology in the sense that
increasing ρ causes high ability (high s) firms to invest less and low ability (low s)
firms to invest more in technology.28 I refer to the first channel as static misallocation
and the second as dynamic misallocation.

The static and dynamic channels of misallocation are calculated as:

Y BE

Y i
=
∫
j

(
z(sj, θBEj )s1−ω

j

)1−γ
n(sj, θBEj )γdj∫

j

(
z(sj, θij)s1−ω

j

)1−γ
n(sj, θBEj )γdj︸ ︷︷ ︸

Dynamic Misallocation

×
∫
j

(
z(sj, θij)s1−ω

j

)1−γ
n(sj, θBEj )γdj∫

j

(
z(sj, θij)s1−ω

j

)1−γ
n(sj, θij)γdj︸ ︷︷ ︸

Static Misallocation

,

(27)

where the notation θij refers to the institutional distortion that firm j would receive if
distortions where set given the parameterization in economy i. Specifically, this holds
the noise component ε fixed in (21) and adjusts the elasticity parameter ρ. Since the
effect of aggregate barriers π is orthogonal to institutional distortions, the comparison
does not depend on its value.

Static and dynamic misallocation measure the productivity gaps between three
economies: (1) an economy with elasticity ρi; (2) an economy with ρBE but where
firm-level technology is restricted to its value in economy i, z(sj, θij); and (3) the
benchmark economy with ρBE. Economy (2) acts as an intermediate step in which
only some reallocation occurs. The gap between economies (1) and (2) measures
static misallocation following in the spirit of Hsieh and Klenow (2009), in which
measured TFPQ is held fixed at the firm-level and resources are reallocated given the
distribution of measured TFPQ. The gap between economies (2) and (3) measures
dynamic misallocation where firms are free to adjust technology and to further adjust
labour to the benchmark institutional distortions.

An implication is that economy (2) looks to be as efficient as the US benchmark
from the perspective of the joint distribution of TFPQ and TFPR. The amplification
channel when moving from economy (2) to (3) is through the change in the distribu-
tion of TFPQ. Figure 5b reports the contribution of each channel to the productivity

28Misallocation of technology is a misnomer because technology is non-rivalrous and so there is
not the same sense of allocating technology between firms.
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gap from institutional distortions in Figure 5a.
Comparing static and dynamic misallocation shows that the dynamic channel dom-

inates, explaining around half of the gains in the top decile economy and around
two-thirds in the bottom decile economy. In lower income countries dynamic misal-
location becomes an increasingly important channel of productivity loss. The change
in the relative importance is explained by the effect of institutional distortions on
the productivity distribution. Higher distortions imply less dispersion in technology
choice and consequently less dispersion in TFPQ. This limits static misallocation
because there is less of a gap between low and high productivity firms limiting the
scope of reallocation. This also expands the scope of dynamic misallocation because
there is now a larger difference between the TFPQ distribution in the distorted and
benchmark economies.

Overall, the results point to dynamic misallocation being an important amplifying
channel for the productivity cost of misallocation. Additionally, the results suggest
that in economies where the effects of misallocation is limited by the dispersion mea-
sured productivity, dynamic misallocation plays an even larger role.

5 Conclusion

Institutions that distort the incentives of potentially large and productive firms are
prevalent in developing countries. In this paper, I examine the importance and con-
sequences of these institutional distortions for delaying the adoption of new technolo-
gies and aggregate productivity. I start by developing a model of technology adoption
that incorporates firm heterogeneity and institutional distortions. The model features
a non-degenerate distribution of technologies used in equilibrium that implies a grad-
ual adoption of new technologies, consistent with the empirical evidence. This feature
of the model allows for aggregate time-series technology data to be mapped into key
underlying parameters that govern the cost-benefit tradeoff of technology adoption.
The calibrated model is used to quantify the overall importance of institutional dis-
tortions. Moving low income economies to US distortions would increase productivity
by up to 123% and reduce the adoption lag of new technologies by up to 13 years.

The results have two implications that are important for future work. First, cross-
country differences in technology use are inherently linked to firm-level decisions. In
this regard, measures of aggregate barriers to adoption that neglect institutional dis-
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tortions may overstate the importance of these channels for explaining cross-country
productivity differences. This is because differences in technology adoption may be a
symptom of other underlying inefficiencies in the economy rather than a cause. While
I focus on institutional distortions as a source of firm-level inefficiencies, it is straight-
forward to extend the results to other mechanisms that might distort the distribution
of firm-level productivities. Second, examining misallocation in a static setting may
understate the importance of institutional distortions and may also distort the mea-
surement of misallocation. The amplification channel of firm-level dynamics is not new
in the literature (e.g. Gabler and Poschke, 2013; Hsieh and Klenow, 2014; Midrigan
and Xu, 2014; Akcigit et al., 2021). The results here provide a comparable measure
of the relative importance of this dynamic channel across countries. Additionally, the
results show how the measurement of institutional distortions may be affected by the
inclusion of technology (or other firm-dynamics). Given this, a path forward for fu-
ture work would be to use firm-level panel data to examine the relationship between
institutional distortions and the evolution of the distribution of productivities.
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Online Appendix (Not for Publication)

A Equilibrium Proof

Proof of Proposition 1 Following Parente and Prescott (1994), the investment
cost function can be rewritten in terms of technology proximity as

ϕj,t = (1− δ)ϕj,t−1 + 1
π
xj,t.

where technology drift is defined as (1− δ) = e−ξg such that the proximity of a fixed
technology will decay by δ each period. The production function written in terms of
technology proximity is

yj,t =
(
z̄t(Asj,t)1−ωϕωj,t

)1−γ
nγj,t. (28)

To solve the value function, I use the guess and verify method with the guess:

v(s,θ)(ϕ−1) = wv̄(s,θ)(ϕ−1) = w
[
Kθ

1
1−ω s+ π(1− δ)ϕ−1

]
,

where K is a constant. The firm’s problem can be written in terms of the normalized
value as

v̄(s,θ)(ϕ−1) = max
n,ϕ

(
z̄θ(As)1−ωϕω

)1−γ
nγ − wn− wπ(ϕ− (1− δ)ϕ−1) +Dv̄(s,θ)(ϕ).

The first-order conditions imply the solution to labor and technology proximity given
in the main text

n(s, θ) =
(
γz̄1−γ

w

) 1
1−ω

1
1−γ

ηωθ
1

1−ω s, and ϕ(s, θ) = ηθ
1

1−ω s,

where η is defined as in the main text. Substituting the expressions into the value

36



function gives

v̄(s,θ)(ϕ−1) = A

( z̄1−γ

w

) 1
1−γ

1
1−ω

γ
γ

1−γ (1− γ)
 ωγ

γ
1−γ (1− γ)

π(1−D(1− δ))

 ω
1−ω

 θ 1
1−ω s

− π
[
ηθ

1
1−ω − (1− δ)ϕ−1

]
+D

[
Kθ

1
1−ω s+ π(1− δ)ηθ

1
1−ω s

]
.

The above expression solves

K = A
1− ω
1−D

ω ω
1−ω (γ

γ
1−γ (1− γ))

1
1−ω

(π(1−De−ξg))
ω

1−ω

 (w̄)−
1

1−ω
1

1−γ ,

and confirms the initial guess.
On the balanced growth path, the technology frontier z̄t grows at rate g and the

wage rate wt grow at rate (1− γ)g implying that v̄t(s, θ) is constant.

Proof of Proposition 2 From the expressions in Proposition 1, the entry condition
can be written as

ce = A
1− ω
1−D

ω ω
1−ω (γ

γ
1−γ (1− γ))

1
1−ω

(π(1−De−ξg))
ω

1−ω

 (w̄)−
1

1−ω
1

1−γ

∫
S×θ

[
θ

1
1−ω s

]
h(s, θ) ds dθ.

Rearranging gives

w =
(
z̄A1−ω

πω

)1−γ
 1− ω

1−D

ω ω
1−ω (γ

γ
1−γ (1− γ))

1
1−ω

(1−De−ξg)
ω

1−ω

 ∫
S×Θ

θ̂
1

1−ω ŝh(ŝ, θ̂) dŝ dθ̂
(1−γ)(1−ω)

.

The expressions also shows that the growth rate of wages is equal to (1− γ)g
Output can then be solved by integrating over the production of all firms and using

the expressions for labor and technology proximity form Proposition 1:

Y = M
∫
S×Θ

y(ŝ, θ̂)h(ŝ, θ̂) dŝ dθ̂

= ζYM

(
z̄A1−ω

πω

)1−γ
 ∫

S×θ θ̂
γ+ ω

1−ω ŝh(ŝ, θ̂) dŝ dθ̂(∫
S×Θ θ̂

1
1−ω ŝh(ŝ, θ̂) dŝ dθ̂

)γ+ω(1−γ)
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where ζY = 1
1−γ

(
1−D
1−ω

)γ+ω(1−γ)
[
ω

ω
1−ω (γ

γ
1−γ (1−γ))

1
1−ω

(1−De−ξg)
ω

1−ω

](1−γ)(1−ω)

. It also follows from the

above expression that output will grow at a rate gY = (1 − γ)g + gM where I show
next that gM = 0.

The labour clearing condition is used to solve for the equilibrium mass of firms.
The labor market clearing condition is given by

1 = M
[∫
S×Θ

[
n(ŝ, θ̂) + π(1− e−gξ(1− λ))ϕ(ŝ, θ̂)

]
h(ŝ, θ̂)dŝdθ̂ + λcE

]
.

Along with the expressions for labor and technology proximity, the above expression
can be rearranged to show that

M =
[(1−D

1− ω

) [
γ

ω(1− γ) + 1− e−ξg(1− λ)
1−De−ξg

]
+ λce

]−1

.

The above expression confirms that the mass of firms is constant along the balanced
growth path, gM = 0.

It follows from the expressions of wage, output and the mass of firms that the
BGP values grow at constant rates if the distribution of firm types (s, θ) is stationary.
Further, the wage expression implies that z̄1−γ

t /wt is constant if this condition holds.
From the expressions for labour demand and technology proximity it follows that
allocation across firms are stationary if the z̄1−γ/wt is constant and the distribution
of types (s, θ) is stationary. Uniqueness and existence of a BGP equilibrium then
follow from the stationarity of the distribution of ability s and distortions θ. More
generally, with some modification of the expressions, the uniqueness and existence of
the BGP equilibrium follows from s following an ergodic distribution.

Proof of Proposition 3 I show that aggregate output in the economy with fixed
cost λce, a mass M of firms, aggregate barrier πrep = π and type (srep, θrep) equal to

srep =


∫
S×θ

[
θ̂γ+ ω

1−ω ŝ
]
h(ŝ, θ̂) dŝ dθ̂(∫

S×Θ θ̂
1

1−ω ŝh(ŝ, θ̂) dŝ dθ̂
)γ+ω(1−γ)


1

1−ω
1

1−γ

and θrep = 1 is identical to the heterogeneous firm model described in the main text.29

29The mass of firms could be set to one in the representative firm economy with the appropriate
adjustments to aggregate productivity (A in the baseline model) and aggregate barriers π. The
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Output of a firm (s, θ) can be written as:

y(s, θ) =
[
z̄tϕ(s, θ)ω(As)1−ω

]1−γ
n(s, θ)γ

= z̄γ
γ

1−γ

(
z̄1−γ

w

) γ
1−γ

ηωAθ
ω

1−ω+γs.

Through substitution of η and the wage rate w it follows that output of a firm (s, θ)
can be written as

y(s, θ) = ζY

(
z̄A1−ω

πω

)1−γ
θγ+ ω

1−ω s(∫
S×Θ θ̂

1
1−ω ŝh(ŝ, θ̂) dŝ dθ̂

)γ+ω(1−γ) ,

and that

y(s, 1) = ζY

(
z̄A1−ω

πω

)1−γ

s(1−γ)(1−ω),

Then, it follows from the above expression that output is equivalent at the aggregate
level to an economy with a representative firm with mass M , ability srep.

It is not generally the case that the wage rate in the representative firm model
will be the same as in the heterogeneous firm model. However, it is always possible
to scale the average value of distortions θ to ensure that the wage rates are equal in
both economy, which does not affect aggregate output (or allocation or technology).
Consequently, the representative firm model can be compared to the heterogeneous
model with the same wage rate without loss of generality.

Finally, I show that the allocation of labour across production (NP ), adoption
(NX) and fixed costs (NE) is the same in the two models. Note that fixed costs in
the representative firm model take the place of entry costs in the heterogeneous firm
model and use Mλce units of labour in both cases. It then follows from the proof of
Proposition 2 that the allocation of labour to production and adoption is the same
in the two models.

Proof of Proposition 4 Follows from definition of L(s, θ).

intuition is the same.
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Proof of Proposition 5 The inclusion of technology implies that a firm’s TFPQ
depends on its institutional distortion. The measured elasticity then needs to account
for this relationship to be compared with the value of ρ in the calibration. I show the
mapping for the decreasing returns to scale (DRS) model and the CES model used
by Hsieh and Klenow (2009) and Bento and Restuccia (2017).

In both cases, let the empirical relationship be given by lnTFPR = β̂0+β̂1 lnTFPQ.

DRS Case: It follows from the expression of TFPQ that

lnTFPQ(s, θ) = ω(1− γ) ln ηθ
1

1−ω s+ (1− ω)(1− γ) ln s

= (1− γ)
[
ω ln η + ω

1− ω ln θ + ln s
]

= ω(1− γ) ln η − ω

1− ω lnTFPR(s, θ) + (1− γ) ln s

= ω(1− γ) ln η − ω

1− ω [ρ ln s− ε] + (1− γ) ln s

where the last line follow from the definition of distortions in (21). Using the empirical
relationship, it follows that the measured elasticity implies the relationship between
1− τ and s is given by:

ln(1− τ) = −β̂0 − β̂1

[
ω(1− γ) ln η − ω

1− ω [ρ ln s− ε] + (1− γ) ln s
]
,

which implies that:

ρ = β̂1

[
(1− γ)− ω

1− ωρ
]
,

The final expression for ρ is then given by:

ρ = (1− γ)
[

1
β̂1

+ ω

1− ω

]−1

.

CES Case: Let ν denote the CES parameter in the model, the full model is outlined
in Appendix F. The derivation of the relationship follows the same steps as in the
DRS case, but the expression differ slightly to account for differences in variable
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relationships between the two models. TFPQ is given by:

lnTFPQ(s, τ) = 1
ν − 1

[
ω ln ηω(1− τ)ν

ω
1−ω sω + (1− ω) ln s

]
= ω

ν − 1 ln ηω +
[ 1
ν − 1 − ρ̃

ω

1− ω
ν

ν − 1

]
ln s

Using the empirical relationship it follows then that the mapping between the elas-
ticity ρ̃ and the measured elasticity is given by:

ρ̃ = 1
ν − 1

[
1
β̂1

+ ω

1− ω
ν

ν − 1

]−1

.

Finally, an additionally adjustment is needed to convert from the elasticity in the
CES model to the DRS model (discussed in Appendix F.3). The elasticity is then
given by

ρ = σ

ν − 1 ρ̃ = ν

(ν − 1)2

[ 1
ELAS + ω

1− ω
ν

ν − 1

]−1
.

Consolidated Mapping: I write the relationship as:

ρ = Γ1

[ 1
ELAS + ω

1− ωΓ2

]−1

where Γ1 and Γ2 are parameters that depend on the empirical model.

Alternative Approach An alternative approach would be to assume that the
model is correct and find the value of ρ necessary to match the data as it is measured
under the alternative data. In this case, TFPQ is incorrectly measured in the empirical
analysis as T̃FPQ, which is used in the measurement of elasticity implying that
the empirical relationship is given by lnTFPQ = β̂0 + β̂1 ln T̃FPQ. The relationship
between T̃FPQj and the true TFPQj for firm j is given by T̃FPQj = (pjyj)

ν
ν−1/nj =

TFPQ
1

ν−1
1

1−γ . Together, this implies that the elasticity of distortions is equal to:

ρ = (1− γ)
[

(1− γ)(ν − 1)
β̂1

+ ω

1− ω

]−1

.
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Proof of Proposition 6 The adoption lag of firm (s, θ) is given by

L(s, θ) = − 1
gξ

ln ηθ
1

1−ω s.

Using the equilibrium expressions, it follows that ϕ(s, θ) ∝ n(s, θ). It also follows that
g = gY

1−γ . Comparing the adoption lag between firms j and j′ can then be written as:

L(sj, θj)− L(sj′ , θj′) = −1− γ
gY ξ

lnnj/nj′ .

The 10-90 lag involves comparing firms based on their relative output. Defining
n10 and n90 as the employment of the marginal firms that produce the 10th and 90th
percentiles of output then implies that:

10-90 Lag = 1− γ
gY ξ

lnn90/n10.

B Data Comparison

The data used to construct the elasticity of distortions ρ is from the World Bank
Enterprise Survey. While this data is collected in order to be representative of firms
within a country, it has a number of limitations. Additionally, the noise term of
distortions σ is held at the US level for all counterfactual economies. To examine the
reasonableness of these assumptions Figure 6 compares the values of moments from
the calibrated model with those used in other misallocation studies.

Figure 6 shows that the standard deviation of TFPR and the elasticity of TFPR
and TFPQ generated by the model are comparable with those found using high
quality micro data. The values tend to be on the conservative side with many low
income countries featuring higher elasticities relative to the calibration.

Table 2 reports the data used in the construction of Figure 6 and the corresponding
sources. For the majority of the data in Table 2, the data is reported as in the cited
paper. Many of the countries are examined in multiple papers and over multiple
years. I use the source with either the most complete information (e.g. SD and Elas
are listed) or with reported values within the range of other studies or years. As the
values are not directly used in the calibration, this does not affect the results. For
many of the empirical examinations of misallocation, the elasticity between TFPR

42



Figure 6: Calibrated Distortions
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Notes: Figure plots the model implied standard deviation of log TFPR and elasticity of
TFPR and TFPQ against empirical moments for several sample countries.

and TFPQ is not reported and so the sample size is substantially smaller.
The table contains information from both studies on the manufacturing and agri-

cultural sectors. Many of the agricultural studies focus on the most underdeveloped
countries. While there is concern about comparison across industries, the agricultural
sector employs the majority of labour in lower income countries implying that it is
important for understanding how institutional distortions affect technology adoption
in these economies.

C Sensitivity of Results

This Appendix Section discusses the sensitivity of the results with respect to the
choice of technology cost curvature ξ. Technology costs depends on both the aggregate
barriers to technology adoption π and the cost curvature parameter ξ. The aggregate
barrier π does not interact with the effect of idiosyncratic policy distortions, and so it
has no affect on the main results. On the other hand, the cost curvature ξ does have
consequences for the effect of idiosyncratic distortions on aggregate productivity and
technology adoption. I consider the sensitivity of the main results to the calibrated
value of ξ. For brevity, I report only the results for the lowest income economies that
correspond to the bottom decile of income-per-capita and focus only on variation in
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Table 2: Data Sources

Country year Rel. Inc. SD Elas Paper
China CHN 2001 0.08 0.68 Hsieh and Klenow (2009)
India IND 1991 0.04 0.67 0.5 Hsieh and Klenow (2009, 2014)
US USA 1997 1.00 0.49 0.09 Hsieh and Klenow (2009, 2014)
Mexico MEX 1998-2008 0.34 0.66 Hsieh and Klenow (2014)
Chile CHL 1983 0.32 0.72 0.694 Chen and Irarrazabal (2014)
U.K. GBR 1993-2002 0.74 0.59 Bartelsman et al. (2013)
Germany DEU 1993-2002 0.79 0.71 Bartelsman et al. (2013)
France FRA 1993-2002 0.81 0.53 Bartelsman et al. (2013)
Netherlands NLD 1993-2002 0.80 0.55 Bartelsman et al. (2013)
Hungary HUN 1993-2002 0.40 1.04 Bartelsman et al. (2013)
Romania ROU 1993-2002 0.17 1.05 Bartelsman et al. (2013)
Slovenia SVN 1993-2002 0.41 0.8 Bartelsman et al. (2013)
Peru PER 2000-2014 0.10 0.798 Lanteri et al. (2019)
Vietnam VIE 2006-2010 0.06 0.42 0.94 Ayerst et al. (2020)
China CHN 1993-2002 0.09 0.78 0.86 Adamopoulos et al. (2017)
Ethiopia ETH 2011-2016 0.03 0.84 0.86 Chen et al. (2019)

Notes: Rel. Income refers to real income per worker in the listed country relative to real
income per worker in the United States for the same base year. All income and employment
data is from the Penn World Tables 9.1. SD refers to the standard deviation of log TFPR.
Elas refers to the elasticity between TFPR and TFPQ.

the institutional distortions through ρi (holding πi fixed). To facilitate comparability,
all parameters other than ξ are held at the baseline calibration values.

In the baseline calibration, the value of ξ is disciplined to a 10-90 lag of 40 years,
which corresponds to an average value for a wide range of technologies in the liter-
ature. On the lower end of the reported values, Jovanovic and Lach (1997) find an
average 10-90 lag of 15 years for 21 technologies. While this number is substantially
smaller than considered in the baseline calibration, it is based on consumer-oriented
technologies that are likely less relevant to focus on production in the model. In
general, broader production technologies (e.g. tractors, electricity, computers) tend
to have longer adoptions lengths, more in line with the baseline calibration. Despite
this, I consider an upper bound on the curvature of ξ = 5.3, which implies a 10-90
adoption lag of around 17 years. On the other extreme, I set the lower bound on the
curvature of ξ = 1.8 (or ω = 0.55), which is similar to the calibrated value used by
Parente and Prescott (1994).30 The value of ξ implies a 10-90 lag of 61 years, which

30There is no direct mapping between my model and Parente and Prescott (1994) because of
the different treatment of labour. I set ω = 0.55 based on the elasticity between technology and
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is substantially longer than the values reported for individual technologies.
Figure 7 reports the sensitivity of the main results under different values of ξ.

Figure 7a reports the 10-90 lag in the benchmark economy under the alternate value
of the technology cost curvature ξ. Figure 7b and 7c report the gains in productivity
and decline in adoption lag attributable to moving from the most severely distorted
economy to the benchmark economy level of distortions.

Figure 7: Sensitivity of Results to ξ
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Notes: Figure (a) plots the 10-90 lag for the Benchmark Economy under different values of
the technology cost curvature ξ. Figure (b) plots the counterfactual gain in productivity from
moving from the most distorted economy (lowest decile output-per-capita) to the benchmark
economy. Figure (c) plots the change in adoptions lags from moving from the most distorted
economy (lowest decile output-per-capita) to the benchmark economy.

The figure shows that the experiment for productivity and the adoption lag have
hump shapes with respect to the technology cost elasticity ξ. The hump shapes for
productivity and adoption are driven by two distinct but related effects. First, for pro-
ductivity, both the benchmark and counterfactual economies are distorted. Increasing
ξ monotonically affects productivity but to different extents in the benchmark and
counterfactual experiments. The effects of misallocation tend to be more sensitive
to changes in ξ for the benchmark economy than the counterfactual economy. Sec-
ond, the value of ξ determines the point in which firm ranking (by employment or
technology adoption) is reversed. At lower levels of ξ this reversal occurs at lower
values of ρ. This implies that at low levels of ξ a further decrease in ξ causes early
adopting low productivity firms to adopt technology earlier decreasing the adoption
lag. Finally, note that while these are the mechanical drivers of the hump shape, the

productivity taking the response of labour as given.
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lack of recalibration is also an important component. Changing ξ has a direct affect
on the magnitude of ρ and the consequences for productivity and adoption.

In terms of magnitude, the figures show that the results are generally robust to
changes in the underlying value of ξ. The relative contribution of productivity is
relatively robust throughout the examined values of ξ, with only a slight decline at
lower values. While the cross-country adoption lag is more sensitive to ξ, it requires
substantial changes in the value of ξ to significantly change the results. Further,
decreasing the value of ξ results in counterfactually long 10-90 lags, which are not
supported by data. The decline in the importance of institutional distortions for
cross-country adoption lags is expected at higher values of ξ since this corresponds
to the case where technology becomes diffused through the economy more rapidly.
Consequently, there is less scope for institutional distortions because technologies
used by firms are more similar, at least in terms of adoption lags.

D Additional Model Details

Figure 8 reports the calibrated values of ρi and πi used in the cross-country analysis.
The values are based on the data moments in Figure 2. Both the correlation of
distortions ρi and the aggregate barriers to technology adoption πi tend to be larger
in lower income countries.

Figure 8: Calibrated Values of ρ and π
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E Alternative Cost Function

In this Appendix section, I examine the sensitivity of the results to the functional
form used for the cost function. While this functional form is commonly used in the
technology adoption literature (e.g. Parente and Prescott, 1994; Comin and Hobijn,
2010), it leads to firm-level technology decisions that are independent from the firm’s
initial level of technology. In this section, I consider an alternative cost function in
which the costs of new technologies become relatively cheaper if the firm uses better
technologies. I then show that when the same parameters are used, the quantitative
implications of the alternative cost function are the same as the baseline model.

E.1 Economic Environment

The economy is similar to the baseline model with the exception of the cost func-
tion. I define scaled ability a = s1−ω to simplify some of the notation and refer to
firms based on their scaled ability a and institutional distortion θ. To simplify expo-
sition, I focus on the calibration case where firm types (a, θ) are fixed following entry.
Throughout the section, I use tildes on parameters to denote parameters with the
same interpretation as in the baseline model but with (potentially) different quanti-
tative implications.

As in the baseline model, the state of technology is described by the technology
frontier z̄t, which grows exogenously at rate g̃ ≥ 0. Improvements in the technology
frontier reduces the costs to firms of adopting new technologies. The main difference
with the cost function is now the curvature of the cost function is on the relative
increase in technology, rather than on the level of technology. Specifically, the cost
function is now given by

x(zt+1, zt) = π̃
(
zt+1 − zt

z̄t

)ξ̃
, (29)

where ξ̃ and π̃ denote the curvature of the cost function and aggregate barriers to
adoption, as in the baseline model. As in the baseline model, the adoption cost is paid
in labour.

In the baseline model, the cost function is interpreted as capturing a menu of op-
tions that a firm faces when making investment decisions. That is, the cost represents
the cost of purchasing, installing and learning to use a set of distinct technologies, In
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contrast, the alternative cost function in (29) can be thought of as capturing a specific
type of dependence between technologies. In this interpretation, better technologies
become less costly because the firm has accumulated some capacity or understanding
of its current technologies (e.g., learning-by-doing).

The cost function now creates a dependence between the cost necessary to reach a
particular technology level zt+1 and the firm’s current technology zt. Define the scaled
technology as žt = zt/z̄t, where the interpretation of scaled technology is similar to
proximity ϕ in the baseline model. The cost function in terms of the scaled technology
is equal to

x(žt+1, žt) = π
(
eg̃žt+1 − žt

)ξ̃
.

E.2 BGP Properties

I focus on the properties of the balanced growth path equilibrium for the analysis.

Firm’s Problem Firm’s are described by their ability a, institutional distortion θ,

and current technology žt. Firms choose labour equal to n(a,θ)(žt) =
(
γz̄1−γ
t

wt

) 1
1−γ

žtθa

in period t to maximize profit. The dynamic problem of the firm is to choose future
scaled technology to maximize value:

v(a,θ)(žt) = max
žt+1

γ̃wt

(
z̄1−γ
t

wt

) 1
1−γ

θažt − wtπ̃
(
eg̃žt+1 − žt

)ξ̃
+Dv(a,θ)(žt+1).

where γ̃ = γ
γ

1−γ (1− γ). Solving the firm’s problem shows that the optimal adoption
investment of a firm (a, θ) is equal to

x(a,θ) = π̃

( z̄1−γ
t

wt

) 1
1−γ γ̃De−γg̃θa

π̃ξ̃(1−De−γg̃)


ξ̃

ξ̃−1

, (30)

where it follows that investment is increasing in the firm’s type (a, θ) and falling in the
aggregate barriers to technology adoption π̃. However, investment does not depend
on the firm’s current technology level zt indicating that all firms that share a type
(a, θ) choose the same investment level.

48



Substituting the expression in (30) into the firm’s value function and solving yields:

v(a,θ)(ž) = wt

 γ̃

1−De−γg̃

(
z̄1−γ

w

) 1
1−γ

ža



+ wt

 1
1−De(1−γ)g̃

 γ̃De−γg̃

ξ̃π̃(1−De−γg̃)

(
z̄1−γ

w

) 1
1−γ

a


ξ̃

ξ̃−1

π(ξ̃ − 1)

 ,

where I use that z̄1−γ
t /wt is constant on the BGP equilibrium in the derivation of

the above expression. The value function is comprised of two terms which represent
the current discounted value of the technology ž used by the firm and the discounted
profits from technology improvements through adoption.

Technology Along the BGP, the value of x(a,θ) is constant. Using the expression
for x from the cost function, the technology value of a firm is equal to:

ž(a,θ)(k) = z(a,θ),t(k)
z̄t

=
k−1∑
k̂=1

z̄t−k̂
z̄t

(
x(a,θ)

π

) 1
ξ̃

=
k−1∑
k̂=1

e−gk̂

(x(a,θ)

π

) 1
ξ̃ ≈ k

(
x(a,θ)

π̃

) 1
ξ̃

,

where k is the number of periods since the firm has entered the market.31 Any two
firms with the same type (a, θ) and age k will use the same scaled technology ž(a,θ)(k)
regardless of the current period.

It follows from the entry and exit structure of the economy that the distribution of
age k firms is hk(k) = λ(1− λ)k with mean value 1/λ. The average technology used
by type (a, θ) firms is equal to

¯̌z(a,θ) =
∞∑
k=1

ž(a,θ)(k) = 1
λ

(
x(a,θ)

π̃

) 1
ξ̃

,

where the expression follows from the average age of firms being 1/λ, regardless of
31This model could be easily extended to include uncertainty in investment outcomes. The main

difference would be that k would then be interpreted as the number of successful technology im-
provements and the distribution would be adjusted to reflect the possibility of failure.
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type (s, θ). The relative average technology used between two firm types is equal to:

¯̌z(a,θ)
¯̌z(a′,θ′)

=
(
θa

θ′a′

) 1
ξ̃−1

. (31)

Both the baseline model and the alternative cost function model highlight the same
relationship between underlying productivity and average technology. The expression
is not quantitatively comparable to the baseline model because ability a does not
have natural units.

Adoption The definition of adoption is the same as in the baseline model. A new
technology has scaled value žL = e−g̃L after L periods. This implies that the optimal
lag of a firm (a, θ) at age k is given by

L(a,θ)(k) = −1
g̃

ln k − 1
g̃ξ̃

ln
(
x(a,θ)

π̃

)
. (32)

Similarly to the baseline model, the firm’s optimal adoption lag is declining in the
firm’s ability a and institutional distortion θ. The addition of k in the expression
reflects that firms use more productive technologies over time indicating that older
firms adopt newer technologies. The expression in (32) can be used to derive similar
comparative statics as in Proposition 4.

BGP Characterization The equilibrium wage rate and output are given by:

wt =

 γ̃De−γg̃

ξ̃π̃(1−De−γg̃)

[
π̃(ξ̃ − 1)

ce(1−De(1−γ)g̃)

] ξ̃−1
ξ̃

z̄tã


1−γ

,

Yt = Mπ̃−
1−γ
ξ

[
γ̃De−γg̃

ξ̃(1−De−γg̃)

]−γ [
ξ̃ − 1

ce(1−De(1−γ)g̃)

]−(1−γ)ξ̃−1
ξ̃

χ̃ (z̄tã)1−γ ,

where ã =
(∫

Θ×A

(
θ̂â
) ξ̃

ξ̃−1 dâ dθ̂
) ξ̃−1

ξ̃

and χ̃ =
(∫

Θ×A θ̂
γ+ 1

ξ̃−1 â
ξ̃

ξ̃−1 dâ dθ̂
)
/ã

ξ̃

ξ̃−1 . The

mass of firms is given by:

M =
λce +

[
γ̃De−γg̃

ξ̃(1−De−γg̃)

] [
ξ̃ − 1

ce(1−De(1−γ)g̃)

] ( γ̃De−γg̃

ξ̃(1−De−γg̃)

)
+ γ

1
1−γ

λ

−1

,
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which is constant along the BGP and does not depend on the distribution of institu-
tional distortions or aggregate barriers π̃.

E.3 Comparison with Baseline Model

I conclude the section by discussing the parameterizations under which the main
quantitative experiments would produce the same results in both the appendix and
baseline models. It is not necessary for the appendix model to match the level of
variables in the baseline model since the quantitative experiments examines relative
outcomes, either over time or across economies.

Parameter Mapping I use the implied model moments to construct a mapping
between parameter values in each model. The appendix model has three parameters
(g̃, ξ̃, π̃), which correspond to the baseline model parameters (g, ξ, π). Throughout the
section, I assume that the underlying distribution of abilities s (and implied value a)
and institutional distortions θ are equal in the two models.

The comparisons of the growth rates and the aggregate barriers are straightforward.
The technology growth rates are compared through their effect on output growth,
which implies that g̃ = gY

1−γ = g. The elasticity of the adoption lag L(a,θ)(k) with
respect to π̃ is equal to 1/gξ, which also implies that π̃ = π.

In the baseline model, the choice of technology is closely related to the employment
of the firm. In the appendix model, a similar intuition follows for the relationship
between employment and investment, which can be written as n(a,θ)(k) ∝ kx(a,θ).
Extending the intuition from the baseline model, the 10-90 Lag can be derived in the
appendix model:

10-90 Lag = 1− γ
gY ξ̃

lnn90/n10 + ε,

where ε = ξ̃−1
g̃ξ̃

ln k90/k10 is a correction term that accounts for the relative ages of the
90th and 10th percentile firms. Since this is unobserved in the data, I assume that
the correction term is equal to zero for the comparison of the models.32 The above

32While the correction term can be positive or negative, it will tend to be positive as older firms
are more likely to use better technologies. This will tend to imply a higher value of ξ̃ all else equal.

51



expression then implies that:

ξ̃ = ξ.

Aggregate Outcomes The previous results show that setting the values of (g̃, ξ̃, π̃)
equal to (g, ξ, π) imply similar moments in both models. I now show that the impli-
cations for aggregate output are the same in both models under this calibration.

The summary statistics ã and χ̃ that capture the effects of average firm ability
and institutional distortions on the aggregate economy. From the previous mapping
it follows that:

ã =
(∫
S×Θ

(
θ̂ŝ1−ω

) 1
1−ω dŝdθ̂

)1−ω
= s̃1−ω

χ̃ =

(∫
S×Θ θ̂

γ+ ω
1−ω (ŝ1−ω)

1
1−ω dâdθ̂

)
s̃

= χ.

The above expressions then imply that the relationship between the system of dis-
tortions and aggregate output is the same in both models. Additionally, it follows
that the elasticity of aggregate output with respect to aggregate barriers π is equal
to ω(1− γ) in both models.

Discussion The above results show that under the baseline parameters, the two
models produce the same quantitative results. Under this interpretation, the baseline
model can be thought of as capturing the average characteristics of firms that share
the same ability s and institutional distortion θ.

There are two caveats with the comparison of the two models. The first caveat is
that the distribution of abilities may not be the same in both models. Within type
(s, θ) heterogeneity creates additional dispersion in employment that is not accounted
for in the baseline model calibration. This has an ambiguous effect on the quantitative
results as it is unclear how this affects the distribution of abilities s. Relatedly, the lag
structure in the appendix model depends also on the ages of the marginal adopters.
Given the relatively large employment bins used in the calibration of the baseline
model, this additionally heterogeneity is unlikely to substantially alter the results.

The second caveat is that the relationship between TFPQ and TFPR implied by
the abilities s and institutional distortions θ differs in the appendix model. This is
because: (1) the inclusion of within type technology heterogeneity implies that TFPQ
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cannot be mapped one-to-one into firm type (s, θ); and (2) the inclusion of within type
technology heterogeneity implies that the measured elasticity of TFPR with respect
to TFPQ is biased towards zero. Both channels would imply that the elasticity ρi

would need to be larger than in the calibrated model in order to match the data
moments.33 As larger ρi amplifies the quantitative results, the results in the baseline
model can be viewed as a lower bound.

F CES Model

In this section, I outline the CES version of the model and discuss the properties
that are necessary for the CES and baseline model, referred to as the decreasing
returns to scale (or DRS) model, to be equivalent. This extends the analysis in Hsieh
and Klenow (2009) who show that the static versions of the models have the same
aggregate implications when the CES parameter is set to ν−1 = 1

1−γ . For this section
I assume that this relationship between parameters holds.

For the sake of brevity, I focus this section on the relevant properties of the model
for the comparison with the DRS model. With this in mind, I focus primarily on the
resulting allocations in the CES model.

F.1 Economic Environment

The model follows the baseline model with the exception of the final consumption
goods, which is taken as the numeraire, and the intermediate production technology.
The final consumption good aggregates intermediate goods according to:

Yt =
(∫

j
y
ν−1
ν

j dj
) ν
ν−1

where ν > 0 is the elasticity of substitution across goods and j denotes the good
produced by firm j.

33Alternatively, the distribution of institutional distortions could be modeled as depending on
TFPQ rather than ability s. This would create a disincentive for firm’s to invest as they become
more productive from higher technology z. This would add a within type technology distortion
that would add to the productivity loss from institutional distortions. Similarly, this would also
increase the importance of institutional distortions for explaining adoption lag as early adopters in
the baseline model tend to be firms that have increased their technology through investment over
several periods. As this investment would decline over time because of larger distortions, there would
be fewer high technology (high žj,t) firms that adopt early.
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Each firm j produces a unique good j that is differentiated from each other good
in the economy. The production of good j depends on firm j’s technology zj, ability
sj and labour input nj:

y =
(
zjs

1−ω
j

) 1
ν−1 nj.

Scaling productivity by 1
ν−1 helps with the comparison of the two models, but other-

wise does not affect the results. The cost of technology follows the baseline model.

F.2 Market Allocation

It follows from the expression for consumption that demand for good j is equal to
yj = Ytp

−ν
j . The firm’s static problem is given by

max
p

(1− τ)py(p)−my(p),

subject to demand and where the term m = wt/(zts1−ω)1/(ν−1) is the marginal cost of
producing good y. The solution to the problem implies that firms set prices equal to
p = ν

ν−1
m

1−τ and that firm revenue is equal to

r = py = Yt

(
ν

ν − 1

)1−ν ( wt
1− τ

)1−ν
(zts1−ω).

The firm’s technology choice problem is then given by

v(s,τ)(z−1) = max
z
ν̃Ytw

1−σ
t (1− τ)σ(zs1−ω)− wtxt +Dv(s,τ)(z),

where ν̃ = ν−ν(ν − 1)1−ν . Solving the problem shows that the choice of technology is
given by:

ϕ(s, τ) =
(
zt(s, τ)
z̄t

)ξ
= η(1− τ)

ν
1−ω s,
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where η =
[

ων̃
π(1−Degw )

Ytz̄t
wσt

] 1
1−ω . It follows that revenue and labour are given by

(1− τ)r(s, τ) = wt

(
ν

ν − 1

)1−ν
(
z̄tYt
wνt

)
ηω(1− τ)

ν
1−ω s

n(s, τ) =
(

ν

ν − 1

)−ν ( z̄tYt
wνt

)
ηω(1− τ)

ν
1−ω s.

The expressions show a similar relationship between the allocations of revenues,
labour and technology as in the baseline model. However, the elasticity of institu-
tional distortions differs between the two models. This implies that if institutional
distortions are set according to the same relationship with ability then the joint dis-
tribution of ability and resource allocations will differ between the two models.

F.3 Comparison with Baseline Model

Institutional distortions are set according to (21) in both the CES and DRS models.
Given the solution in the previous section, the goal is to show the conditions under
which the two models will produce the same joint distributions of productivity and
resources. I show that this holds when the relationship between ability s and TFPQ
is the same in both models.

In the CES model, measured TFPQ is equal to

TFPQ = (py)
ν
ν−1

n
∝ (s1−ωϕω)

1
ν−1 ∝ (1− τ)

ω
1−ω

ν
ν−1 s

1
ν−1 = s

1
ν−1−ρ̃[ ω

1−ω
ν
ν−1 ].

In the DRS model, measured TFPQ is equal to:

TFPQ = py

nγ
∝ (s1−ωϕω)1−γ ∝ (1− τ)

ω
1−ω s1−γ = s1−γ−ρ ω

1−ω .

It follows then that if ρ and ρ̃ are set appropriately, the implied distributions of s will
be the same in the two models (up to a scalar constant). Specifically, this requires
that the elasticities are set such that:

ρ = ν

ν − 1 ρ̃.

It is also straightforward to show that setting the elasticity as above will imply that
the relationship between ability s (or equivalently TFPQ) and the other endogenous
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variables in the model (labour, technology and revenue). It also follows that when
there is no technology choice (ω → 0) then only 1 − γ = 1

ν−1 is needed for the two
models to be equivalent (as shown by Hsieh and Klenow, 2009).

A similar adjustment could be made for the standard deviation of TFPR, which is
dictated by the parameter σ in the model. Following the same relationship as above,
the implied relationship would be σ = ν

ν−1 σ̃. Given that TFPR is model independent
(that is, TFPR = py/n) I use the standard deviation of TFPR in the data directly
for the calibration.
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