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Abstract

What firms drive the diffusion of new general purpose technologies (GPT) and how
does this diffusion affect productivity growth? I develop a model of innovative firms
that adopt and diffuse information-communication technologies (ICT), a recent GPT.
The central mechanism is that research productivity depends on ICT diffusion, lead-
ing to ICT firms investing more as ICT is diffused. I construct a measure of ICT-
related patents capturing the application of ICT to new products. Empirically, firm-
level citations-per-patent, patenting frequency, and productivity growth increase fol-
lowing ICT adoption. Quantifying the model shows that around two-thirds of ICT
diffusion is driven by ICT firms, rather than new adopters, and growth falls by as
much as 28% following the introduction of ICT, despite growth eventually recovering.
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1 Introduction

General purpose technologies (GPTs), such as electricity or computers, transform the econ-
omy and fuel economic growth through their scope for improvement and broad applications
throughout the economy (Bresnahan and Trajtenberg, 1995). Despite their importance, the
diffusion of new GPTs often lasts several decades and coincides with prolonged growth slow-
downs (Jovanovic and Rousseau, 2005). This leads to two questions: (1) how are new GPTs
diffused through the economy? and (2) how does the diffusion of new GPTs affect growth?

To answer these questions, I develop a quantitative model of GPT diffusion by innovative
firms and apply this model to the case of information-communication technologies (ICT).
While being widely studied, the consequences of ICT diffusion remain unclear and debated.1

The existing literature primarily focuses on equipment-based measures of ICT diffusion. In
contrast, I focus on a novel dimension of ICT as a method of invention, capturing that
part of ICT’s value is that is allows for innovations that would be otherwise impossible.
Consider, as an example, a vehicle’s electronic control unit, which is an application of ICT
to the automotive industry. The innovation builds directly on ICT and allows for future
improvements to vehicles that would be otherwise impossible. However, equipment-based
measures would only capture the value of the ICT equipment used in the vehicle, understating
the innovations value as an input to future innovations. I develop a patent-based measure
of ICT innovations that captures applications to new innovations and use this measure,
along with the quantitative model, to answer the initial questions. First, slow ICT diffusion
was due to high adoption costs and the difficulty expanding ICT into new markets through
innovations. That is, the electronic control unit, and similar innovations, are both costly ideas
to invent and difficult to leverage in new markets. Second, ICT’s introduction contributed
to a prolonged growth slowdown, with growth falling by as much as 28%, despite increased
long-run growth potential.

I develop an endogenous growth model that bridges the innovation and technology adop-
tion literatures. The model extends Klette and Kortum (2004) and Acemoglu et al. (2016a)
to allow for adoption R&D as well as competing innovations between ICT and non-ICT firms.
Firms invest in innovation and adoption R&D. On the innovation side, firms invest to create
new, higher quality varieties of existing goods allowing the innovating firm to displace the
good’s incumbent producer. On the adoption side, firms invest to apply ICT to their goods
and innovation process. In this regard, adoption captures the automotive firm learning to
apply ICT to their cars (inventing the electronic control unit) rather than buying computer

1See, for example, Solow (1987); Brynjolfsson and Hitt (2000); Gordon (2000); Oliner and Sichel (2000);
Acemoglu et al. (2014).
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equipment for their offices.
ICT affects innovation dynamics through three channels. First, ICT has a direct value

to consumers allowing adopters to charge higher markups. This could capture, for example,
the novelty or extra value added relative to non-ICT goods. Second, ICT and non-ICT firms
differ in the relative costs and returns to innovation R&D. Third, knowledge and competi-
tion spillovers differ between ICT and non-ICT firms. ICT (non-ICT) firms build more on
the products of (knowledge spillover) and are more likely to be displaced by (competition
spillover) other ICT (non-ICT) firms. This captures the inherent difficulty of applying new
technologies to goods. The consequence of ICT-dependent spillovers is that ICT innovations
embodied in goods are relatively more complementary to future ICT innovations leading
ICT firms to invest more in R&D when ICT is more common, all else equal.

The model outcomes are ICT diffusion, which is measured as the ICT product share,
and the aggregate productivity growth rate. ICT diffusion depends on both the adoption
of ICT by non-ICT firms (adoption channel), such as the initial invention of the electronic
control unit, and the expansion of ICT firms into new product lines (expansion channel), such
as expanding the electronic control unit into adjacent markets (e.g., motorbikes). Growth
depends on the relative research productivity of and allocation of resources across different
types of R&D (e.g., adoption by non-ICT firms, innovation by ICT firms). Consequently,
growth is tightly linked to ICT diffusion which affects both research productivity, through
knowledge spillovers, and the R&D allocation, through incentives to innovate.

I analyze ICT diffusion by innovative US firms using administrative micro-level data on
US patents. The main empirical challenge is to identify patents that apply ICT knowledge
but are not in the ICT product market as these patents tend not to be ICT innovations
under traditional classifications (e.g., USPTO technology classes). I address this challenge
by using patent citation networks to construct a set of ICT-related patents that captures
the application of ICT to new innovations, a key feature of general purpose technologies
(Griliches, 1957; Jovanovic and Rousseau, 2005).

The ICT-related patent share increases from 21% in 1980 to 70% in 2000 compared with
an increase from 15% to 25% using direct measures of ICT use. I use this measure to shed
light on differences between ICT and non-ICT firm research productivity and the returns to
ICT adoption in the model. This also serves to validate the measure of ICT-related patents
by showings that firms characteristics change around the time of adoption. First, ICT firms
produce higher quality patents and patent more frequently after adoption. Patent quality
of adopting firms, measured by citations, increases by 12% relative to the firm’s previous
patents, controlling for trends in technology class and year. Adopting firms also patent, on
average, 23% more than before adoption, controlling for firm heterogeneity and time trends.
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Second, using linked Compustat data, firm productivity growth increases to around double
its initial value in the adoption year and proceeding two years. The results are robust to
alternative outcomes (e.g., employment growth), alternative controls (e.g., firm-level fixed
effects) and do not hold for placebo measures of adoption based on other technology classes
(e.g., chemical patents).

I calibrate the model’s transition path to match ICT diffusion in the data. The empirical
diffusion curve helps discipline the relative cost of adoption R&D. Empirical differences
between ICT and non-ICT firm innovation characteristics (i.e., frequency, quality) and firm
productivity growth around the time of adoption discipline the relative research productivity
of ICT firms and the relative value of ICT products to consumers. The relative frequency of
ICT patents citing non-ICT patents disciplines the strength of non-ICT to ICT knowledge
spillovers. The calibrated model replicates the share of ICT diffusion driven by new adopters
and the ICT product share, which are not targeted in the calibration.

I use the quantitative model to examine the drivers of ICT diffusion and the consequences
for productivity growth. The calibration only directly targets the growth rate on the pre-ICT
balanced growth path equilibrium. Long-run and transition-path growth are determined by
the model using the relative innovative characteristics of ICT and non-ICT firms as well as
the empirical path of ICT diffusion.2 In the long-run, productivity growth increases by 37%
of its initial value because of higher R&D spending by ICT firms. However, the introduction
of ICT leads to a prolonged growth slowdown, in which growth falls by as much as 28%
of its initial value, and growth does not recover to its initial value until around 2025. The
growth slowdown is much longer lived than other mechanisms (e.g., Hornstein and Krusell,
1996; Yorukoglu, 1998) implying that ICT diffusion across innovations is more related to
long-term secular decline in aggregate productivity growth.3 The growth slowdown is driven
by a decline in non-ICT innovation as ICT becomes more prevalent but is unable to fully
accommodate the decline in non-ICT innovation.

ICT diffusion is primarily driven by the expansion channel in which ICT firms expand into
new product lines, accounting for around two-thirds of cumulative diffusion. The expansion
channel becomes stronger as ICT diffuses and ICT firms increase innovation. The adoption
channel accounts for the remaining one-third of cumulative diffusion. The adoption channel
is strongest early in the transition period when the returns to adopting are highest due to

2The calibration does not directly target the decline in research productivity (Bloom et al., 2020) or
aggregate productivity growth over this period. Additionally, the innovative characteristics of ICT and non-
ICT firms are set to target within sector and year moments such that these moments do not capture these
trends. In this regard, the results should be thought of as isolating the impact of ICT adoption and diffusion
on innovations without assuming a stance on how ICT adoption and diffusion applies to these trends.

3The longer growth slowdown is driven by the slower diffusion of ICT innovations in the data (see Section
3). For example, the share of ICT-related products reaches only around 50% by 2000.
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ICT firms facing less competition.
Finally, I use the quantitative model to examine subsidies and taxes to non-ICT firm

adoption and ICT firm innovation to provide insight for the role of policy and to highlight the
model mechanisms. Subsidizing adoption R&D has a relatively small effect on ICT diffusion,
growth, and welfare over the transition path. This is due to a negative feedback channel in
which the initial increase in ICT diffusion lowers future benefits of adoption due to increased
competition. Additionally, if the policymaker’s time horizon is short enough, they find it
beneficial to tax adoption R&D to flatten the drop in productivity growth. In contrast to the
adoption R&D subsidy, subsidizing R&D by ICT firms encourages diffusion throughout the
transition period and has a larger impact as ICT becomes more prevalent. This is driven by a
reinforcing mechanism in which higher ICT innovation increases knowledge spillovers making
future ICT R&D more productive. Taken together, the results suggest that policy should
be designed over the entire transition path and should focus on users of new technologies,
rather than non-users.

Related literature. My paper relates to the endogenous growth literature (Romer, 1990;
Aghion and Howitt, 1992; Grossman and Helpman, 1991). Following Klette and Kortum
(2004), the literature focuses on connecting endogenous growth models with micro-level data
to identify key parameters (Lentz and Mortensen, 2008; Acemoglu et al., 2015; Garcia-Macia
et al., 2016). Acemoglu et al. (2016a) extend Klette and Kortum (2004) to examine innovative
interactions between environmentally clean and dirty innovators. I adapt this framework to
examine interactions between non-ICT and ICT firms and extend the model to incorporate
adoption R&D, allowing for firms to switch types. This allows me to examine endogenous
ICT diffusion through both new adopters (through adoption R&D) and previous adopters
(through innovation R&D). Others examine a closely related channel in which growth is
driven by firms imitating the production techniques of frontier firms (e.g., Jovanovic and
MacDonald, 1994; Perla and Tonetti, 2014; Lucas and Moll, 2014; Benhabib et al., 2018).
ICT adoption similarly allows firms to improve productivity but differs by affecting the
innovation dynamics of adopting firms through the effects on research productivity and
knowledge and competition spillovers.

My paper also relates to the literature studying the determinants of technology adoption
(Caselli and Coleman, 2001; Comin and Hobijn, 2004, 2010; Comin and Mestieri, 2018; Chen,
2018; Ayerst, 2020a). Due to data limitations, this literature generally focuses on either firm-
level surveys that cover a small subset of the economy or on aggregate measures of technology
stock (e.g., number of computers). In contrast, I develop a novel measure of ICT diffusion,
unrelated to ICT equipment, that captures the application of ICT to new innovations using

4



administrative micro-data on US patents and citation networks. The benefit of this measure
is that it allows me to capture the entirety of ICT diffusion while maintaining the micro-level
nature of the data, allowing me to examine firm-level innovation and market outcomes.

Finally, my paper relates to the literature examining the consequences of ICT on growth
(e.g., Brynjolfsson and Hitt, 2000; Oliner and Sichel, 2000; Gordon, 2000).4 Hornstein and
Krusell (1996), Greenwood and Yorukoglu (1997), and Yorukoglu (1998) find that the growth
slowdown following the introduction of ICT is driven by workers and firms slowly learning
how to use new ICT equipment.5 I provide an alternative explanation that is driven by de-
clining investment by non-ICT firms. This channel leads to a longer-lived growth slowdown
because of slow ICT diffusion across innovations in the data, and ties the paper more to the
longer term slowdown in aggregate productivity growth. In a closely related paper, Baslandze
(2018) uses patent data to examine the consequences of ICT diffusion on sectoral knowledge
spillovers and innovation. In contrast, I focus on diffusion as an endogenous outcome de-
pending on firm-level actions. While I similarly find that ICT improves long-run growth,
this only occurs after a costly transition period in which productivity growth slows.

In closely related papers, De Ridder (2020) and Aghion et al. (2021) explain the secular
decline in productivity growth as the consequence of the rise in intangible capital associated
with the digitalization of the economy. Mechanically, intangible capital provides a competi-
tive advantage to some firms, leading disadvantaged firms to reduce R&D investment. Using
different data, I find a similar pattern in which productivity growth slows because non-ICT
firms (the disadvantaged type) invest less in R&D as ICT firms (the advantaged type) be-
come more common. My departure is to allow for endogenous firm types, which implies that
the growth slowdown is temporary since all firms eventually become ICT firms, and use data
to discipline the introduction of ICT. Despite the eventual recovery, I find that the growth
rate does not recover for several decades indicating that this channel remains an important
source of the productivity growth slowdown observed in the data.

Outline The remainder of this paper is organized as follows. Section 2 presents the model.
Section 3 presents an overview of the data used as well as the main empirical results. Section
4 presents the calibration strategy and the estimated parameters. Section 5 presents the
quantitative results. Section 6 concludes.

4Another closely related consequence of ICT diffusion is that it increases the scale of firms (e.g. Bloom
et al., 2014; DeStefano et al., 2018; Lashkari et al., 2021). In my model, adopters (ICT firms) tend to have
a larger production scale as ICT firms invest more in R&D and expand into more product lines, which
increases sales and employment.

5Brynjolfsson et al. (2021) provide another explanation resulting from the poor measurement of comple-
mentary, intangible investment during early stages of new GPTs.
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2 Model

I develop a model of innovative firms that adopt and diffuse a newly introduced general
purpose technology, which is taken to be ICT (information communication technology), to
be consistent with the empirical context. ICT is a firm type that dictates: (1) a persistent
component of product quality, capturing the novelty of ICT products to consumers; (2)
the relative costs and returns of innovations; and (3) the innovative interactions with other
firms through knowledge and competition spillovers. In this regard, ICT firms capture a
broader notion of ICT adoption (as opposed to using ICT equipment) in that ICT become
embedded into the firm’s production and innovation process. ICT is diffused through either
direct adoption by non-ICT firms or innovation into new product lines by ICT firms.

2.1 Preferences and Production

Time is continuous and indexed by t ∈ [0,∞). The economy consists of a representative
household and an endogenous mass of heterogeneous firms. Households supply labour to the
production of goods. Firms produce goods and invest in R&D to innovate or adopt ICT.
ICT is introduced to the economy in period 0 and all firms are initially non-ICT firms.

Households. The representative household is populated by a unit mass of workers with
preferences described by:

U([C(t)]∞t=0) =
∫ ∞

0
exp{−ρt} log(C(t))dt (1)

where C(t) is the consumption of the final good in period t and ρ is the household’s discount
rate. Members supply labor inelastically in the production of goods.

Production. The consumption good is produced by a representative producer using a
continuum of differentiated intermediate goods j ∈ [0, 1] produced by firms f . The production
technology of the representative producer is:

ln Y (t) =
∫ 1

0
ln
∑
f∈Fj

ηjf (t)qjf (t)kjf (t)
 dj, (2)

where kjf (t) the quantity of intermediate good j purchased from firm f ; qjf (t) is a quality
component of good j that depends on the history of innovations; ηjf is a quality component
associated with whether the good is an ICT or non-ICT good; and Fj is the set of potential
producers of good j. The ICT component of quality is given by ηjf = ηκf where κf = ict if
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the firm uses ICT and κf = non if the firm does not. The value ηnon is normalized to 1 such
that ηict ≥ 1 captures the relative preference of consumers for ICT products. For example,
ηict could be thought of as the novelty of computerized products to consumers.

Firms differ in whether they produce ICT goods κf ∈ {ict, non}, the number of goods
that the firm produces nf , the goods that the firm can produce jf ∈ Jf , and the associated
quality of these goods qjf ∈ Qf . The production of intermediate good jf by firm f is linear
in labour ` and equal to kjf (t) = `jf (t). ICT use directly affects production through the fixed
quality component η and indirectly through the evolution of qualities q through innovations.

2.2 Research and Development

Incumbent firms invest in exploration and adoption R&D. Exploration R&D expands the
set of goods that firms produce, such that J ′f = Jf ∪ {j}. Adoption R&D switches non-ICT
firms to ICT firms, such that κ′f = ict. New firms are created through entry R&D.6

Exploration R&D. Exploration R&D follows Klette and Kortum (2004) in which suc-
cessful innovators create a new, higher quality variety of a randomly drawn good j ∈ [0, 1],
which allows them to displace the incumbent producer. My point of departure is to allow for
non-ICT and ICT firms to differ in terms of cost and returns of exploration R&D as well as
in their innovative interactions with other firms.

A firm that invests Sx in R&D innovates at rate Aκ(t)Zx = Aκ(t) (Sx/ψκxY (t))1/ζx n
1−1/ζx
f ,

where ψκx > 0 and ζx > 1 parameterize the level and curvature of the cost function; nf is a
firm-specific spillover term that depends on the number of goods produced by firm f , as in
Klette and Kortum (2004); Aκ(t) is a technology-specific term that determines knowledge
and competition spillovers for ICT and non-ICT firms; and Y (t) is a scaling term for the size
of the economy.7 The scaled cost of exploration R&D, sx = Sx/nf , can be written in terms
of the scaled innovation intensity, zx = Zx/nf , as:

sκfx (zx, t) = ψκfx z
ζx
x Y (t).

6The literature also highlights the importance of innovator heterogeneity (as in Acemoglu et al., 2015;
Ayerst, 2020b) and different forms of R&D (as in Akcigit and Kerr, 2018; Garcia-Macia et al., 2016). Earlier
versions of this paper incorporated these features and found broadly similar quantitative results for growth
and diffusion dynamics. Adding innovator heterogeneity reveals that innovation and adoption R&D are
skewed towards a small subset of highly innovative (superstar) firms. Allowing firms to improve existing
product lines (internal or exploitation R&D) has a quantitatively small effect because this type of innovation
accounts for a small fraction of total innovation, as documented by Akcigit and Kerr (2018).

7Scaling R&D costs is necessary to avoid explosive growth. The scaling could also be thought of as R&D
requiring some scarce resource as an input (e.g., skilled labor).

7



At rate Aκ(t)zxnf exploration R&D draws an idea that improves the quality of a good
j ∈ [0, 1] to qjf = λκf qjf ′ for λ

κf > 1, where f is the innovating firm and f ′ is the current
highest-quality producer of good j. The innovated good j is drawn randomly but is more
likely to improve goods with the same technology κ as the innovating firm. The technology-
specific spillover is set to

Aκ(t) = Dκ(t) + ακ(1−Dκ(t)) (3)

where Dκ(t) is the share of κ goods and ακ ∈ [0, 1] is a parameter that describes the relative
likelihood of κ innovations drawing κ goods. A firm with innovation intensity zx will draw
goods with the same κ at rateDκ(t)zxnf and goods with the other κ at rate ακ(1−Dκ(t))zxnf .
Within each κ, the innovated good is drawn randomly from a uniform distribution.

I refer to ακ as the cross-technology spillover because it dictates the strength of knowledge
and competition spillovers between firms using different general purpose technologies. At the
extremes, αnon = αict = 1 implies that knowledge is perfectly transferable and is nesting case
for the standard Klette and Kortum (2004) innovation interactions. The case where αnon =
αict = 0 implies that knowledge is perfectly isolated for each technology. For tractability, I
assume that αnon = 0 such that the non-ICT firms cannot innovate on goods produced by
ICT firms. Appendix D.4 examines the sensitivity of the results to αnon > 0.

The technology-specific spillover Aκ(t) captures the unique interactions between general
purpose technologies and innovation. Intuitively, the cross-technology spillover captures that
firms tend to learn and compete more with firms using similar technologies. For example, an
ICT-using car manufacturer may learn more from innovations by ICT firms (e.g., navigation
systems) than firms in adjacent markets with similar products (e.g., bicycle manufacturers).
More broadly, the cross-technology spillovers capture, in a reduced form, any factors that
would lead to differences in spillovers across non-ICT and ICT firms. For example, cross-
technology spillovers could capture the probability that ideas stemming from production—
captured by nf in the R&D cost function—arrive for goods using the same technology.
Appendix A.4 provides a micro foundation for Aκ(t) from costly conversion of non-ICT
goods and differences in the relative benefit of converting goods (i.e., different values of η).

An alternative modeling assumption would be that ICT innovations become more benefi-
cial over time through a larger step size λict. In Appendix B.4, I show that diffusion through
ICT innovations is mainly through the number of innovations and that the relative average
quality of ICT and non-ICT innovations remains constant over time.
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Adoption R&D. Adoption is modeled as a stochastic process in which firms invest to learn
how to apply ICT to their goods. This reflects the idea that general purpose technologies,
such as ICT, are a method of invention and integrated into the innovation process (e.g.,
inventing the electronic control unit), rather than as an input in production (e.g., buying
computer equipment). Successful adoption switches the firm from a non-ICT firm (κ = non)
to an ICT firm (κ = ict) and increases the quality component η from ηnon = 1 to ηict for all
of the firm’s goods. Like exploration R&D, firms choose a rate of adoption za by investing:

Sa(za, t) = sa(za, t)nf = ψaz
ζa
a nfY (t),

where ψa > 0 and ζa > 1 are cost function parameters. As with exploration R&D, the cost
of adoption R&D scales with firm size through the number of products nf .

Entry and exit. Entry occurs through successful research efforts to innovate on existing
goods. Potential entrants choose the probability of entry ze by investing se(ze) = ψezeY (t).
Successful entrants draw a good j ∈ [0, 1] at random and enter with the same κ as the
incumbent producer.8 The quality step λκ is determined after the entrant’s type κ.

Firms exit when they no longer produce any goods. Let z̄κx(t) be the product-weighted
average innovation intensity of κ firms, then a firm f loses products at rate:

δκf (t) = ze(t) +
[
Dκf (t)z̄κfx (t) + (1−Dκf (t))α−κf z̄−κfx (t)

]
, (4)

where−κf = {ict, non}/κf . The expression shows how ακ captures the competition spillovers
across ICT and non-ICT firms. Larger α−κf implies that the ICT (non-ICT) firms are more
likely to be displaced by non-ICT (ICT) firm innovations.

2.3 Equilibrium

I now characterize the equilibrium of the economy. The analysis focuses on the diffusion
of ICT throughout the economy. I assume that ICT is eventually diffused, which assumes
that the ICT parameters (ψict, λict, ψa, ηict) compare favorably with the non-ICT parameters
(ψnon, λnon).9 However, this assumption does not require that the long-run growth rate will

8Appendix B.8 shows that in the data entrants are slightly more likely, around 2.5%, to be ICT firms
than the implied firm distribution. This channel is quantitatively small and so I abstract from it.

9This is the empirically relevant case for ICT. For αict > 0 and λict > 1, any equilibrium path that
includes some diffusion of ICT implies that ICT will become fully diffused in the long run since ICT firms
will always choose a strictly positive level of exploration R&D.
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increase.10 Appendix A.2 presents the balanced growth path equilibrium.

2.3.1 Production

Equilibrium production is standard and is briefly summarized here, with a full description
provided in Appendix A.1. The final consumption good is taken to be the numeraire.

Firms compete in Bertrand competition, leading the highest quality producer to charge
the limit price for good j with markup µj = ηjf qjf/ηjf ′qjf ′ (where f

′ is the next lowest price-
per-quality firm). The impact of ICT on production is then through the markups charged by
ICT firms innovating on non-ICT goods, where η differs. The markup distribution Φ(µ, t)
is a key state variable for describing the distribution of production and prices as well as
aggregate output in the economy. The markup distribution depends on the distribution of
ICT goods and the previous producer of the good.

2.3.2 Research and Development

Dynamic problem. A good with markup µ earns profits π(µ, t) = (1−µ−1)Y (t). In what
follows I drop firm f subscript and refer to firms based on type κ ∈ {ict, non}, the markups
charged on actively-produced goods [µi]ni=1, and the cardinality of this set n. The firm’s
dynamic problem is to set exploration and adoption R&D to maximize value:

rV κ
n ([µi]) = max

zx,za

n∑
i′=1

{
(1− µ−1

i′ )Y + δκ
[
V κ
n−1([µi]/{µi′})− V κ

n ([µi])
]}

+ zxn
[[
Dκ(t)[V κ

n+1([µi] ∪ {λκ})− V κ
n ([µi])] + ακD−κ[V κ

n+1([µi] ∪ {ηκλκ})− V κ
n ([µi])]

]]
− nsκx(zx)Y + zκa

[
V ict
n ([ηictµi])− V κ

n ([µi])
]
− nsa(za)Y + V̇ κ

n ([µi])
(5)

where t is suppressed for brevity. I write the above expression under the restriction that
adoption intensity zicta = 0 for ICT firms such that the expression can be stated parsimo-
niously. Firm value depends on five components: (i) the current operating profits of the firm’s
products; (ii) the possibility of losing products to innovations by other firms; (iii) the net
expected value of potentially of adding new products through exploration R&D; (iv) the
net expected value of potentially adopting ICT; and (v) the change in firm value over time.
Proposition 1 characterizes the value and policy functions.

10ICT may be privately preferable but not socially preferable or adoption may lead to large short-term
gains that offset lower productivity growth in the long run. As a simple example, consider a parameterization
where ηict is very large and the ICT exploration R&D technology (λict, ψictx ) implies a lower BGP growth
rate than the non-ICT BGP. Firms adopt to gain the immediate benefits of the high ηict but transition to
a lower growth BGP in the long run.
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Proposition 1. The value of a firm is described by:

V κ
n ([µi], t) =

n∑
i′=1

[
Bκ(t) + vκ(t)(1− µ−1

i′ )
]
Y (t). (6)

where vκ(t) and Bκ(t) are defined in Appendix A. Exploration R&D is given by:

zκx(t) =
[
Dκ(t)[vκ(t)(1− (λκ)−1) +Bκ(t)] + ακD−κ(t) [vκ(t) (1− (λκηκ)−1) +Bκ(t)]

ζxψκx

] 1
ζx−1

,

(7)

and adoption R&D is given by:

za(t) =

v
ict(t)1−(ηict)−1

λnon

ψaζa︸ ︷︷ ︸
Direct Benefit

+ [vict(t)(1− (λnon)−1) +Bict(t)]− [vnon(t)(1− (λnon)−1) +Bnon(t)]
ψaζa︸ ︷︷ ︸

Indirect Benefit


1

ζa−1

.

(8)

Firm value in (6) is composed of a portfolio value vκ(t) that captures the expected net
present value of the firm’s currently produced goods and an option value Bκ(t) that captures
the net value from potentially adding new products and adopting ICT.

Exploration R&D depends on the probability of a firm successfully innovating and the
value of a new product line to the firm. All else equal, ICT firms invest more in exploration
R&D when ICT is more common (higherDict(t)) or if cross-technology spillovers αict are high.
Adoption R&D depends on the direct and indirect benefits of adoption. The direct benefit
captures that adopting ICT has a direct benefit on product quality through ηict allowing firms
to charge a higher markup. The indirect benefit captures the benefit from operating as a ICT
firm relative to a non-ICT firm, which depends on the extent of knowledge and competition
spillovers for each firm type. For example, early adopters of ICT face low competition from
non-ICT firms, which increases the indirect benefits from adoption.

Potential entrants invest ψeze to enter at rate ze. The entry problem is:

Ve(t) = max
ze

ze
[[
Dict(t)V ict

1 (λict, t) +Dnon(t)V non
1 (λnon, t)

]
− Ve(t)

]
− ψezeY (t), (9)

where Ve(t) is the value of a potential entrant at time t. Entry R&D is positive when the
expected value of creating a new firm is at least as great as the marginal cost of entry. The
linearity of the problem implies that the value of potential entrants equals zero in equilibrium
when entry is positive ze > 0, such that the expected value of a new firm equals the marginal
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cost of entry.

Aggregate dynamics. The aggregate dynamics of the economy are described by the share
of ICT goods Dict(t) and the growth rate of average good quality g(t). The law of motion
for the share of ICT goods Dict(t) is given by:

dDict(t)
dt

= αictzictx (t)Dict(t)Dnon(t)︸ ︷︷ ︸
Expansion Channel

+ Dnon(t)za(t)︸ ︷︷ ︸
Adoption Channel

, (10)

where Dnon(t) = 1−Dict(t). The share of ICT goods Dict(t) is the main measure of diffusion
in the quantitative analysis because it is directly related to firm choices (see Proposition 1)
and aggregate growth.

ICT diffusion in (10) is the first outcome of the model. The expansion channel depends on
the total exploration R&D intensity of ICT firms zictx (t) multiplied by the number of ICT good
Dict(t) (since innovation scales with products) and the probability an ICT innovation draws
and converts a non-ICT product αictDnon(t). The adoption channel depends on adoption
R&D intensity za(t), which may increase or decrease in Dict(t) depending on the relative
strength of knowledge and competition spillovers. The strength of the two channels depends
on the relative characteristics of non-ICT and ICT firms. All else equal, more innovative ICT
firms (higher zictx (t) from lower costs ψictx or higher returns λictx ) implies a stronger expansion
channel while cheaper adoption (lower ψa) implies a stronger adoption channel.

Long-run output growth depends on growth in the average good quality q̄(t).11 Average
quality growth is given by

g(t) =
[∑
κ

[
Dκ(t) lnλκ + ακD−κ(t) lnλκηκ

]
zκx(t)

]
+ za(t)Dnon(t) ln ηict + ze(t) lnλe(t),

(11)

where ln λe(t) = Dnon(t) lnλnon +Dict(t) lnλict is the average step size of entrants.
Growth in (11) is the second outcome of the model. Growth depends on the relative use of

ICTDict, investment in each type of R&D (exploration, adoption, and entry), and the relative
step size of each innovation activity. Growth is highly dependent on ICT diffusion, which
determines both the research productivity of ICT and non-ICT firms (through knowledge
spillovers) and the relative R&D allocations between ICT and non-ICT innovations.

11Output growth also depends on misallocation of factors of production (described in Appendix A.1).
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2.3.3 Equilibrium Definition

Definition 1. An equilibrium is a sequence of values:

[r(t), w(t), C(t), p(µ, t), k(µ, t), `(µ, t), zκx(t), za(t), ze(t),Dict(t), δκ(t), q̄(t),Φ(µ, t)],

for κ ∈ {ict, non}, µ ∈ {λnon, λict, ηictλict, ηictλnon} and t ∈ [0,∞) such that: (i) given prices,
C(t) maximize household utility in (1); (ii) given prices, kj(t) maximizes the final good
producer’s profits; (iii) given w(t) and demand, `(µ, t) and p(µ, t) maximize firm profits; (iv)
za(t) and zκx(t) maximize firm value in (5); (v) potential entrants maximize (9); (vi) the
distribution of markups follows (17); (vii) growth of average quality q̄(t) follows (11); (viii)
the creative destruction rate δκ(t) is given by (4); (ix) the ICT good share follows (10); (x)
the labor, intermediate goods, and final good markets clear.

2.4 Discussion

The key model outcomes describe ICT diffusion, in (10), and growth, in (11). The quanti-
tative analysis uses the model structure to determine the drivers of ICT diffusion and the
implications for aggregate productivity growth. Table 1 shows how the underlying model
parameters relate to the main outcomes when future states of the economy are held fixed.
This simplifying assumption is necessary since both diffusion and growth depend on highly
interconnected and forward looking firm-level decisions.12 The table ignores the feedback
between channels to firm value, which are examined in the quantitative analysis.

Increasing the research productivity of adoption R&D is beneficial for growth, since
adoption increases quality through ηict, and diffusion, through the adoption channel. In-
creasing research productivity of ICT and non-ICT firms increases growth but increasing
non-ICT research productivity can have an ambiguous effects on ICT diffusion. Increasing
the non-ICT innovation step size λnon increases the value of currently produced products
(vκ(t)(1− (λκ)−1) in Proposition 1), which can incentivize adoption if ICT firms face lower
competition spillovers (lower δκ), but also decreases the marginal profitability gains from
adoption (lowering adoption). Increasing the research productivity of ICT firms increases
diffusion through more ICT innovations (expansion channel). Increasing cross-technology
spillovers is qualitatively similar to increasing ICT research productivity since it results in
more ICT innovations for a given R&D investment.

12Additionally, since growth may be higher or lower along the transition than on the balanced growth path,
it is difficult to make direct predictions about the relationship between growth and ICT diffusion and the
underlying model parameters. For example, say that growth temporarily declines over the transition path.
Decreasing adoption costs could increase adoption initially resulting in lower growth over the transition path
as well as a shorter transition path.
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Table 1: Model Growth and Diffusion

Growth Diffusion

g(t) dDict(t)
dt

Expansion Adoption
Adoption Productivity ↑ ηict, ↓ ψa ↑ ↑ − ↑
Non-ICT Research Productivity ↑ λnon, ↓ ψnonx ↑ ↑↓ − ↑↓
ICT Research Productivity ↑ λict, ↓ ψictx ↑ ↑ ↑ −
Cross-Technology Spillovers ↑ αict ↑ ↑ ↑ −

Notes: Change in growth g(t) and diffusion dDict(t)/dt for a change in the indicated parameter on a fixed
path of Dict(t) and g(t). The results follow from (10) and (5) and Proposition 1 when the values (vκ(t), Bκ(t))
are held fixed. ↑ and ↓ indicate a positive or negative direct impact, − indicates no direct impact, and ↑↓
indicates an ambiguous impact.

3 Empirical Analysis

The model describes ICT diffusion through goods and innovative capability, as opposed to
ICT equipment. In this regard, diffusion of ICT equipment or capital stock does not capture
the same diffusion as in the model. Given this, I start by constructing a new measure of ICT-
related patents that captures the application of ICT to new inventions. ICT-related patents
capture a broader measure of diffusion, compared with looking at ICT patents directly, and
closely relates to the model concept of diffusion.

The final part of the section examines differences in ICT and non-ICT innovators. This
serves two goals. First, the analysis validates the construction of ICT-related patents by
showing that ICT-related firms and innovations differ from non-ICT firms and innovations.
Second, the analysis disciplines key model parameters related to the relative research pro-
ductivity (through λκ, ψκx , and ηict) of ICT and non-ICT firms.

3.1 Data Sources

NBER USPTO Utility Patent Grant Database. The dataset contains information
on all patents granted by the United States Patent and Trademark Office from 1976 to 2006.
Citations are adjusted using Hall et al. (2001) weights to correct for sectoral and temporal
differences in the likelihood of being cited. Additionally, I focus on within year and sector
measures when comparing ICT and non-ICT firms to reduce the influence of aggregate trends,
such as declining research productivity (Bloom et al., 2020). The date of a patent is taken
to be the application date to avoid the influence of bureaucratic delays. For the analysis,
the sample is restricted to patents issued to US non-governmental organizations and in the
sub-period from 1980 to 2000. I trim the early periods because my measure of ICT-related
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patents is based on backward citations creating bias in early periods. Similarly, I trim the
late periods because forward citations become truncated and to avoid the inclusion of the
Dot-Com bubble. Variables are constructed using the full length of data and all patents in
the dataset (i.e., not just those to non-governmental US organizations).

Compustat Database. I use the Compustat database to connect the patent measures
to firm-level financial outcomes. The main financial variables of interest are 4-digit SIC
classification, sales, number of employees, and R&D expenditure. To construct the final
sample, I drop all non-US corporations; all firms in the financial and utilities sectors13; firms
that experience major mergers or acquisitions; firms that report negative sales; and firms
that do not patent over the sample. Finally, I winsorize all variables at the top and bottom
1% level using annual breakpoints to reduce the influence of outliers.

3.2 Construction of ICT-Related Variables

The challenge with mapping the data to the model involves constructing a measure of ICT
that captures the application of ICT ideas throughout the economy. Patents in the Computers
& Communication technology class capture innovations directly related to the ICT products
but do not capture innovations in other markets that build on ICT innovations. For example,
a car’s diagnostic system may build on a microprocessor even though the end product is not
directly classified in the Computers & Communication product market.14

To address this challenge, I use citations links between patents to construct a set of ICT-
related patents that captures the application of ICT innovations to other markets. I then
use this measure to construct empirical counterparts to the model concepts of innovations,
firms, and products. Table 2 summarizes the constructed empirical variables.

At the center of these variables is ICT distance that measures the numbers of citations
links between each patent and the Computers & Communications technology class. This
provides a simple measure of how closely related a patent is to core ICT innovations. ICT-
related patents are defined as patents with distance less than or equal to three. The cutoff
distance is based on the distance that maximizes differences between adopters and non-
adopters, discussed in Appendix B.2. ICT-related firms are firms in years after ICT-related
patents exceed a 10% threshold of the firm’s patent portfolio for the first time.15 Finally, ICT-
related products are technology subclasses with a significant share of ICT-related patents.16

13Specifically, SIC codes from 4900 to 5000 (utilities firms) and from 6900 to 7000 (financial firms).
14This example is from Patent 5,633,458 issued by Ford Motor Company. This patent has distance 2 to

the ICT technology class using my measure.
15Appendix B.6 shows the robustness of the main results to the choice of cutoff.
16The measure of ICT-related products is used as a check on the fit of the model rather than being directly
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Table 2: ICT Innovations, Firms, and Products

Definition
ICT distance Recursively defined. A patent is distance d if at least 10% of its

citations are on distance d − 1 or lower patents. Computers &
Communications patents are distance d = 0.

ICT-related patents Patent observations with ICT distance three or less.

ICT-related firms Firm-year observations after ICT patents exceed 10% of patents
in the firm’s patent portfolio for the first year.

ICT-related products Patent class (three-digit USPTO classification) by year obser-
vations where at least 25% of the depreciated patent stock are
ICT-related patents.

Table 3: Patent Summary Statistics

ICT-related Non-ICT All
Number of Observations 396,438 595,098 991,536
1980-1990 85,212 268,915 354,127
1990-2000 311,226 326,183 637,409
Average Citations 24.2 13.2 17.6

Table 3 reports summary statistics for ICT-related and non-ICT related patents. The
fraction of ICT-related patents increases substantially in the latter half of the sample. Addi-
tionally, ICT-related patents are, on average, cited more frequently than non-ICT patents.
However, this may mechanically be driven by ICT-related patents appearing more frequently
in later periods.

Figure 1 reports different measures of ICT diffusion over time. Computers & Communi-
cation patents increase from just under 20% of total patents in 1980 to around 25% in 2000
while ICT-related patents increase from just over 20% in 1980 to around 70% by 2000. The
difference between the two trends is that the share of ICT-related patents outside of the
Computers & Communication technology class increases from around 10% to 45% over the
period.

Figure 1 also shows that the ICT diffusion has been comparatively slower for innovations
than for ICT equipment, which took around 30 years (Jovanovic and Rousseau, 2005). The

used in any of the analysis. I adapt the classification from Acemoglu et al. (2016a) who define products at
the three-digit SIC level. To maintain the full patent sample, I define products at the three-digit USPTO
classification, which I refer to as the product class. I define a product class as ICT-related once 25% of its
depreciated patent stock is ICT-related patents. Appendix B.3 provides details and shows that the measure
is robust to using a 50% cutoff.
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Figure 1: Diffusion of ICT in the United States
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Notes: The figure reports fraction of total patents for different sequences. The solid line plots the fraction of
citation weighted ICT-related patents. The dashed line plots the fraction of citations weighted ICT-related
patents excluding Computers & Communication (C&C) patents. The dotted line plots the fraction of citation
weighted Computers & Communications (C&C) patents.

slow diffusion of ICT through innovations is consistent with anecdotal evidence about the
spread of ICT applications to new products. For example, the application of ICT to some
adjacent products (e.g., smart watches, self-checkout) has occurred only recently whereas
other products (e.g., smart glasses) have been unable to breakthrough into broad markets.
In contrast, the adoption of ICT equipment into the workplace and homes was relatively
quick. Consequently, ICT diffusion through innovations should be expected to have a longer-
lived impact on growth, compared with ICT diffusion through equipment.

3.3 How do ICT and Non-ICT Firms Differ?

ICT and non-ICT firms differ in the model through their relative research productivity, which
depends on the relative cost and returns to R&D (ψκx , λκ), and the relative quality of ICT and
non-ICT goods to consumers ηκ. I use differences in innovation outcomes to discipline the
R&D functions and firm-level growth around the time of adoption to discipline the relative
quality of goods. Additionally, the analysis validates the measure of ICT-related patents by
showing differences in innovation and market outcomes of adopters and non-adopters.

Innovation outcomes. I begin by examining the differences in firm innovation outcomes
using only the patent data. Table 3 suggests that ICT-related patents receive on average
around double the citations of non-ICT-related patents. However, this comparison may be
overstated since ICT-related patents appear in later periods and different sectors.
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Firm-level citations and patenting frequency differences between adopters and non-adopters
are estimated as:

Outcomeh,t = exp
{
θ × Adoptionh,t + Γf + Γs,t + εh,t

}
(12)

where Outcomeh,t is a measure of either innovation quality or frequency at either the patent
h = j (Columns 1 and 2) or firm h = f (Columns 3 and 4) level for period t. The estimation
also includes firm-level fixed effects Γf and Γs,t is a technology class-by-year fixed effect for
the patent-level regressions and a year fixed effect for the firm-level regressions. The firm-
level regressions control for only year, rather than year by technology class, because some
firms patent in multiple technology classes. Firm-level fixed effects are included in all four
specifications to account for firm heterogeneity, such as better innovators being more likely
to adopt. Table 4 reports the results.

Table 4: Innovative Outcomes and Adoption

Citations-per-Patent Patents-per-Period
(1) (2) (3) (4)

ICT-Rel Patent 0.255***
(0.00453)

Adopter 0.111*** 0.203*** 0.260***
(0.00808) (0.0297) (0.0353)

Firm FE Yes Yes Yes Yes
Year FE No No Yes Yes
Tech. class × Year FE Yes Yes No No
Observations 945723 945723 169219 168646

Notes: * p < 0.10, ** p < 0.05, *** p < 0.01. Results are estimated using Poisson pseudo-maximum
likelihood (PPML). Robust standard errors clustered at the firm level are reported in parentheses. The unit
of observation in columns (1) and (2) is at the patent-level. The unit of observation in columns (3) and (4) is
at the firm-level. Patents in column (3) are unweighted and patents in column (4) are weighted by citations.
Technology classes are defined for Chemical, Computers & Communications, Drug, Electronics, Mechanics,
and Other patents.

Column (1) confirms that ICT-related patents receive, on average, 29% (≈ exp(0.255))
more citations compared to non-ICT patents issued in the same year and technology class,
even after controlling for firm-specific differences. Column (2) shows that, on average, a
firm’s patent quality increases by 12% after adopting, compared with other firms in the same
technology class and year. Both values are smaller than in Table 3, as expected. Appendix
C.2 shows that the results are robust to using Kogan et al. (2017) patent values as quality
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measures, although the interpretation is different.
The coefficient in column (3) shows that, on average, adopters apply for 23% more patents

than prior to adopting, relative to other firms in the same year. Column (4) shows that
weighting by citations increases the coefficient estimate because adopters tend to apply for
more highly cited patents. Together, the results indicate that adopters tend to be more
frequent innovators following adoption.

The implication is that ICT firms tend to have higher returns to innovating, captured by
λκx, and innovate more frequently, which could be a results of higher returns λκx, lower costs
ψκx , or higher knowledge spillovers αict. The model is necessary to disentangle these factors.

Firm-level productivity. The limitation of the patent database is that it restricts to
patent outcomes, which may not capture changes in economic activity. I use the linked
Compustat-patent data to examine changes in firm-level labour productivity (sales-per-
employee) following adoption.17 Specifically, I estimate the relationship as:

gf,t = β0 +
4∑

t′=−4
βA,t′Adoptf,t+t′ + Xf,tβX + Γs + Γt + εf,t (13)

where gf,t is the labour productivity growth of firm f in year t; Adoptf,t takes value one if
firm f adopts ICT in year t, and zero otherwise; Xf,t is a vector of controls; Γs is a sector
(four-digit SIC) fixed effect; and Γt is a year fixed effect.18 Controls used in the baseline
specification are: the log of one plus the number of (forward) citations received by the
patents applied for by firm f in period t; log of firm size (measured by employment); the log
of one plus the firms R&D expenditure over sales; firm age in period t; as well as dummy
variables to control for whether firm f patents in period t, whether firm f issues its first
patent in period t, whether firm f issues a Computers & Communications patent in period

17A concern is that the relationship is being driven by either the endogeneity of the relationship (e.g., firms
are more likely to adopt in high growth periods) or an omitted variables (e.g., new management leads to
both adoption and high growth). In both cases, the timing of the growth increase provides some reassurance
that adoption is driving growth. Specifically, given the difficulty of adopting ICT, alternative explanations
should lead to growth increasing prior to adoption. Additionally, the robustness of the results to firm-level
fixed effects and other firm-level controls (Appendix B.5) suggests that these alternative channels would
need to be relatively short lived. Another concern is that adoption is mismeasured because either the timing
is incorrect (i.e., adoption occurs earlier or later than the recorded year) or some non-adopters are being
recorded as adopters. This would create downward bias on the coefficient estimates since these non-adopter
firm-years should have average growth.

18Growth is gf,t = (Sales/Empf,t − Sales/Empf,t−1)/(0.5(Sales/Empf,t + Sales/Empf,t−1)). In the re-
gressions, I do not deflate sales since changes in prices are captured by the year fixed effect. For the comparison
with average firm growth, I deflate sales using GDP deflators from the BEA national income and product
account tables.

19



t.19 Standard errors are clustered at the two-digit SIC sector level.
The coefficient βA,t′ is interpreted as the average increase in firm growth t′ periods before

or after adoption. Figure 2 reports the coefficient estimates with 95% confidence bands.

Figure 2: Labour Productivity Growth Before and After Adoption
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Notes: The figure plots the coefficients βA,t′ from the regression in (13). The bands report the 95% confidence
interval based on robust standard errors clustered at the 2 digit SIC sector level. Year t− 1 is the year prior
to the adoption of the new technology. Average growth in sales-per-employee is 5.84%. Controls include the
log of one plus the number of (forward) citations received by the patents applied for by firm f in period t;
log of firm size (measured by employment); the log of one plus the firms R&D expenditure over sales; firm
age in period t; as well as dummy variables to control for whether firm f patents in period t, whether firm
f issues their first patent in period t and whether firm f issues a Computers & Communications patent in
period t. The regression includes year and 4 digit SIC sector fixed effects.

Figure 2 reports that labour productivity growth doubles in the year of and two years
following adoption. In the third year, labour productivity growth is elevated and statistically
significant at the 10% level. The total increase in growth corresponds to a 3.7-fold increase in
the average one-year growth rate of labour productivity. While labour productivity growth
increases immediately following adoption, there does not appear to be a long-term effect on
the growth rate. However, the temporary increase in the growth rate does imply a persistent
increase in labor productivity between adopters and non-adopters. The growth pattern is
consistent with the model in which adopting firms get a one-time increase in sales per em-
ployee from the increase in the ICT-specific component of product quality ηict. The lack of a
long-lasting increase in growth is also consistent with the model since exploration innovation
increases the innovating firm’s number of products but not markups.

19In addition, I check that the results are robust to a variety of alternative specifications: different time
horizons; controls for patenting; different measures of size including employment and book value; research
stock; R&D intensity; fixed effects measured at the 2 and 3 digit SIC code; firm-level fixed effects; including
non-patenting firms.
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Appendix B.5 shows that the results are robust to alternative controls (e.g., sector defini-
tion, firm controls), outcomes (e.g., employment growth), and estimation techniques. I also
find that placebo measures of adoption based on other technology classes (e.g., chemicals)
do not produce similar increases in growth.

4 Calibration and Measurement

I calibrate the model transition path to match ICT diffusion in the data. Empirical differences
between adopter and non-adopter innovation characteristics discipline ICT and non-ICT
innovation technologies and the aggregate diffusion curve (Figure 1) disciplines adoption
R&D costs. A key aspect of the calibration is that moments related to growth over the
transition period are not targeted since a goal of the calibration is to examine the model
implications for growth. The next section examines the model-implied growth path and the
drivers of ICT diffusion using the quantitative model.

4.1 Calibration Strategy

Calibration preliminaries. The discount rate ρ is set to 0.02, which corresponds to an
annual discount rate of 4% on the initial balanced growth path (BGP). The curvature of the
exploration R&D cost function is set to ζx = 2, consistent with Acemoglu et al. (2015).20

Directly calibrated moments. The relative innovation step size is set to ln λict/ ln λnon =
exp(0.255) to match the relative patent quality of ICT-related and non-ICT-related patents
from Column (1) of Table 4. The data moment follows the common assumption that more
highly cited patents tend to be more valuable to the innovating firm (see Hall et al., 2005;
Kogan et al., 2017; Abrams et al., 2018, for empirical support).21

Jointly calibrated moments. The parameters {λnon, ψnonx , λict, ψictx , η
ict, ψa, ζa, α

ict} are
jointly chosen to minimize the mean squared error between the model and data moments
in Table 5. Unless otherwise stated, the moments are calculated as the mean value over the
1980 to 2000 period in both the data and model.

Model moments are calculated over the transition path that follows the introduction of
the ICT. For a given set of parameter values, the transition path and moments are calculated
as follows. To start, the BGPs in which no firms use ICT and all firms use ICT are solved (see

20I confirm the estimate by regressing ln(pat/salesf,t) on ln(R&D/salesf,t) in levels and in differences
with a firm fixed effect. The estimated coefficients, corresponding to 1/ζ, are 0.51 and 0.53.

21In the data firms with higher citations also tend to have higher growth (from Table 14).
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Table 5: Model and Data Moments

Description of Moment Data Model
Initial BGP Growth (%) 2.00 1.99
Entry Share (%) 17.9 20.1
Profit Margin (%) 12.2 12.4
Relative Innovation Rate 0.203 0.203
Post-Adoption Growth 3.7 3.8
ICT Patent Share in 1999 (%) 70.7 71.9
MSE ICT Patent Share 0 0.04
Prob ICT Cites Non-ICT (%) 28.9 28.4

Notes: Model and data moments are calculated as mean values over the period 1980 to 2000 with the
exception of the Initial BGP Growth and the ICT Patent Share in 1999.

Proposition 2 in Appendix A). The discretized model is then solved over the transition path
that follows the introduction of ICT, with Dict(0) = 0, and ends on the full ICT diffusion
BGP (see Appendix D.1 for details). Model periods are mapped into data years using the
ICT patent share in 1980. The period that reaches 21.8% (the data share) of ICT patents in
the model transition path is set to be 1980. This allows me to use the model to infer the date
that ICT is introduced. Finally, moments are calculated in the model periods corresponding
to 1980 to 2000.

4.2 Calibration Moments

I discuss the construction of the calibration moments and closely related parameters for
intuition below. Additional details on the sensitivity of the model moments to parameters
are reported in Appendix D.2.

Initial BGP Growth. The initial BGP growth rate is set to 2.0% which roughly corre-
sponds to the post-war growth rate in the US until the start of the data in the late 1970s.
The initial BGP growth rate is related to the parameters dictating the research productivity
of non-ICT firms, (λnonx , ψnonx ). I include the initial BGP growth rate rather than directly
targeting growth over the transition since a goal of the estimation is to use the model to
assess growth over the transition path and in the long run.

Entry Share. The data moment is the share of citation-weighted patents applied for by
firms in their first year of observation in the dataset. For the calculation of this moment, I also
top code the total patent count at 1,000 patents (affecting 159 firms or 0.1% of the sample) to
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reduce the influence of outliers. The model moment is calculated as average entry rate ze(t)
divided by the average innovation rate ze(t) + Anon(t)znonx (t)Dnon(t) + Aict(t)zictx (t)Dict(t).
The entry rate ze(t) is closely related to the cost of entry ψe but is also related to the costs
and benefits of exploration R&D.

Profit Margin. The data moment is the median value of operating income before depre-
ciation divided by sales.22 The model moment is calculated as the average value of 1− µ−1

across products where the markup µ depends on the step sizes (λnon, λict, ηict).

Relative Innovation Rate. The data moment is from Column (3) of Table 4. The model
moment is calculated as lnAict(t)zictx (t) − lnAnon(t)znonx (t). The moment is closely related
with the R&D technologies, (ψκx , λκx).

Post-Adoption Growth. The data moment is the increase in labor productivity growth,
divided by average firm-level growth, in the the periods following adoption (see Figure 2).
The model moment is calculated as the relative growth of a firm at the time of adoption
ηict/g(t) and is closely related to the ICT quality component ηict. This loads the entirety of
the productivity increase following adoption on a single point in time. Following adoption,
the firm’s labour productivity growth returns to its pre-adoption value, as in the data.23

ICT Patent Share in 1999. Diffusion in the data is measured as the ICT-related patent
share. This does not directly correspond to the ICT product share since ICT firms may
innovate more or less frequently than non-ICT firms. The model citation-weighted ICT-
related patent share is:

ICT Patent Share in t = [Dict(t)zictx (t)(Dict(t) + αictDnon(t))) + ze(t)Dict(t)] lnλict∑
κ [Dκzκx(t)(Dκ(t) + ακ(1−Dκ(t))) + ze(t)Dκ(t)] lnλκ . (14)

The numerator measures total quality-weighted ICT innovations and the denominator mea-
sure the total quality-weighted innovations. I use (14) to construct two moments related to
the length and shape of the diffusion. The first moment is the share ICT-related patents in

22Additionally, I calculate the statistic on a sub-sample of innovative firms that only includes firms that
report profit margins above a 25% loss to avoid the influence of outliers. The target does not change much
for alternative cutoffs—e.g., the target would be 13.5% if the loss cutoff is 10% and 10.5% if the loss cutoff
is 50%—but is sensitive to including the bottom tail of the distribution where low sales or highly negative
operating incomes skew the distribution.

23In the model, exploration innovation and creative destruction primarily affect the innovating firm’s scale
through the number of product lines implying that growth in sales-per-employee is close to output growth
for both adopters and non-adopters. Exploration innovation and creative destruction may add or drop higher
or lower markup products, but this tends to be negligible.
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1999, since this is the highest recorded ICT-related patent share in the data. Diffusion in
the model is closely related to the adoption R&D cost function parameters (ψa, ζa). Figure
5a shows the graphical comparison of the data and model.

MSE ICT Patents. The second moment targeted using (14) is the mean-squared error
of ICT-related patents between the model and data over the full transition period (1980 to
2000). This moment is distinct from the previous moment in that it incorporates information
on ICT diffusion from all years of the data, rather than just one. This helps to discipline the
curvature of the adoption cost function ζa that determines the elasticity of adoption R&D
investment to changes in the relative value of ICT.

Prob ICT Cites Non-ICT. The probability that an ICT patent cites a non-ICT patent
is included as a measure of the knowledge spillovers from non-ICT to ICT innovations. The
moment follows the idea of modeling ICT as a method of innovation, rather than a production
input, and is supported by empirical evidence showing the importance of knowledge flows
along citation networks (e.g., Acemoglu et al., 2016b).24 The data moment is constructed
as the average of the share of non-ICT patents cited by ICT patents, excluding citations to
patents produced by the same firm. The model moment is constructed as

Prob ICT Cites Non-ICTt = (zictx (t)Dict(t))αictDnon(t)
zictt (t)Dict(t) [Dict(t) + αictDnon(t)] = αict(1−Dict(t))

Dict(t) + αict(1−Dict(t)) .

If the ICT product share Dict(t) was directly observed in the data, the above expression
could be rearranged to calculate αict directly.

4.3 Parameter Values

The parameter values from the calibration are listed in Table 6. Panel B reports the moments
chosen to match moments in Table 5.

Table 6 shows that ICT firms have a relatively higher innovation step size (λict > λnon)
but also face higher costs of exploration R&D (ψictx > ψnonx ). The higher step size of ICT firms
leads to increasing markups and profits over time, consistent with evidence from De Loecker
et al. (2018). The parameters also imply that measured research productivity of non-ICT
firms is higher than ICT firms such that long-run research productivity is declining, consistent

24See also evidence in Berkes et al. (2022), Liu and Ma (2022), and Ayerst et al. (2022) showing that pro-
ductivity, firm value, and innovation are affected by shocks to upstream sector knowledge flows, as measured
by citations links.
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Table 6: Calibrated Parameters of the Model

A. Externally Calibrated Parameters
Parameter Value
Discount Rate ρ 0.02
Crv Exploration R&D ζx 2

B. Parameters Calibrated to Internal Targets
Parameter Value
Cost of Entry ψe 1.41
Cost of Non-ICT Exploration R&D ψnonx 2.80
Cost of ICT Exploration R&D ψictx 3.20
Non-ICT Step Size λnon 1.119
ICT Step Size λict 1.157
Level Cost of Adoption R&D ψa 10.66
Rel Quality of ICT Products ηict 1.055
Cross-technology Spillovers αict 0.259
Crv Adoption R&D ζa 1.67

with Bloom et al. (2020).25 However, the impact on growth is ambiguous since the higher
profitability of ICT innovations (λict > λnon) causes more resources to be allocated to R&D.

Adoption R&D compares unfavorably in both costs (ψa > ψκx) and returns (ηict < λκx) to
exploration R&D. The low relative return on adoption ηict is seemingly in contradiction with
the empirical results showing that adopting firms experience a large increase in productivity
growth relative to average firm growth. The contradiction is resolved by noting that the
comparison is between the ex-post adoption growth, which depends on only ηict, and the
ex-ante average growth, which depends on both λκ and the low value of zκx .

The cross-technology spillover term αict lies in the middle of the no spillover (αict = 0)
and perfect spillover (αict = 1) parameterizations. Being greater than zero implies that ICT
firms build on and compete with non-ICT firms while being less than one implies that ICT
firms are relatively biased towards innovating on other ICT goods. On its own, the cross-
technology spillover value implies that growth falls over the transition period as knowledge
spillovers are lower when goods are divided between ICT and non-ICT firms.

25Following Bloom et al. (2020), measured research productivity is calculated as average growth in sales,
g(t) + (zκx(t) − δκ), divided by scaled R&D input, ψκx(zκx)ζx . An alternative measure, in the spirit of TFP,
would be to measure research productivity as growth generated with a fixed input of R&D, i.e., ln(λκ)(sx/
ψκx)1/ζx . This would indicate that ICT firms have higher research productivity.
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4.4 Value and Policy Functions

Figure 3 plots the value and policy functions over the transition period. To provide insight
into the changes in the value and policy functions, Figure 4 plots the technology-specific
spillover and the probability of losing products δκ for ICT and non-ICT firms.

Figure 3: Value and Policy Functions
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Notes: Figure (a) reports the value of non-ICT and ICT firms with a single product line and average markups
over the transition period. Figure (b) reports the policy functions for exploration and adoption R&D over
the transition period. Both sets of functions are described in Proposition 1.

The value of ICT firms declines steadily over the transition path whereas the value of
non-ICT firms increases slightly. The change in firm values is driven by the relative strength
of knowledge and competition spillovers over the transition. Knowledge spillovers increase
for ICT firms over the transition period because ICT becomes more widely used making ICT
firm innovation more productive (Figure 4a). Similarly, competition spillovers also increase
for ICT firms over the transition period because increasing ICT innovation leads to ICT
firms being more likely to lose products to competitors (Figure 4b). On net, the increase in
competition spillovers dominates knowledge spillovers leading to ICT firm value falling over
the transition, while the reverse holds for non-ICT firm value. The decline in the value of
ICT firms is large enough to decrease ICT innovation intensity zictx (t) over the transition
despite a contemporaneous increase in the ICT-specific spillover (Figure 4a).26

Adoption R&D also declines over the transition period. From (8), adoption R&D depends
on both the direct and indirect benefits from adoption, which both decline over the transition.

26The relative values of zκx and the technology-specific spillovers imply that ICT firms are larger in terms
of employment and sales on average compared with non-ICT firms. While ICT adoption in the model does
not necessarily correlate with ICT equipment use, the result is similar to empirical evidence showing that
ICT adopters tend to have larger scale (e.g. Bloom et al., 2014; DeStefano et al., 2018; Lashkari et al., 2021).
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Figure 4: Innovation Success and Creative Destruction
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Notes: Figure (a) reports the value of Aκ(t) = Dκ(t) + ακ(1 − Dκ) that scales the innovation rate. Figure
(b) reports the probability of losing a product δκ(t), given in (4), for both ICT and non-ICT firms.

The direct benefits depend on the increase in product quality, which is constant, and ICT
firm value, which declines. The indirect benefits depend on the relative value of ICT and
non-ICT firms, which is positive but declines over the transition path. The decomposition
of adoption intensity za(t) into the direct and indirect benefits is reported in Appendix D.3.

4.5 Goodness of Fit and Other Model Moments

Figure 5a plots the (citation adjusted) ICT-related patent share in the data and model,
which is directly targeted in the calibration. The patent share depends both on the product
share and the innovation intensity of the two firm types. This implies that the citation share
tends to overstate the product share of the firm type that innovates more frequently. Over
the data period, the ICT product share is lower than the ICT citation share because ICT
firms innovate relatively more frequently than non-ICT firms.

Figure 5b compares the ICT-related product share in the model with data, which is not
directly targeted or mechanically implied by the calibration. the model replicates the overall
level and trend of the data. Following (14), the gap between the ICT product share and ICT
patent share in the model depends on the relative innovation intensity of ICT and non-ICT
firms. It follows that the moment provides a check on parameters related to the relative
research intensity of ICT and non-ICT firms (ψκx , λκ, and αict). The moment also validates
the structure of innovations and adoption the model. For example, an alternative innovation
structure with single product firms that only innovate on their own product would flatten the
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Figure 5: ICT Diffusion in the Data and Model
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Notes: Figure (a) reports the citation-adjusted ICT patent share in the model and data. The model measure
is the share of quality-weighted ICT innovations from (14). The data measure is the share of citation-weighted
ICT-related patents from Section 3. Figure (b) reports the ICT product share for the model and data. The
product share in the model is Dict(t). The product share in the data is calculated as the patent-weighted
share of sectors (US three-digit class) with a depreciated patent stock of ICT-related patents above 25% of
the patent stock (details in Appendix B.3).

ICT-product share over time since there would be no scope for ICT innovations to convert
non-ICT products.

Table 7: Other Model and Data Moments

Description of Moment Data Model
R&D to Sales (%) 5.7 6.0
New ICT Patenter Share (%) 14.7 12.1
Final BGP Growth (%) - 2.72

Notes: Model and data moments are calculated as mean values over the period 1980 to 2000 with the
exception of the Initial BGP Growth and the ICT Patent Share in 1999. The model moment for New ICT
Patenter Share is calculated using simulation data.

Table 7 reports moments that are not directly targeted in the calibration. The first moment
reported is R&D to sales. The data moment is constructed as the median value for firms that
report R&D, excluding firms that higher R&D than sales. The model moment is close to the
data and consistent with values reported in the literature, such as Acemoglu et al. (2015) who
report values between 5.9% and 8.6%. The second moment shows that the model replicates
the share of ICT patents that are issued by firms that have not issued ICT innovations in
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the past.27 ICT innovations can be divided into innovations by new ICT innovators (recent
adopters) or by previous ICT innovators. The moment can be viewed as a check on the
model’s ability to replicate the overall number of adopters, which is something not directly
targeted in the calibration.

The final moment reports that the predicted growth rate for the long-run BGP, in which
ICT becomes fully diffused, is 37% higher than the initial growth rate. The model does not
account for the secular decline in research productivity found by Bloom et al. (2020), which
would dominate the predicted increase in growth.

The quantitative model makes several additional predictions about ICT and non-ICT firms
over the transition path that can be tested in the data. Appendix C tests the prediction in
Figures 3 and 4. Using patent values from Kogan et al. (2017), the relative value of ICT
patents was highest at the start of the sample and declined over the period (Appendix C.2),
consistent with the convergence in values V κ

1 (λκ) in Figure 3a. The innovation frequency gap
between ICT and non-ICT firms has also increased substantially over time (Appendix C.3),
consistent with the widening gap in innovation rates zκx in Figures 3b and 4a. Finally, ICT
firms are less likely than non-ICT to exit but these differences decline over time (Appendix
C.4), consistent with the creative destruction rates δκ in Figure 4b.

5 Quantitative Results

I use the calibrated model to examine the consequences of ICT diffusion for aggregate produc-
tivity growth. The calibrated model predicts how aggregate productivity growth is affected
by ICT diffusion through changes in firm-level R&D allocations and knowledge spillovers
over the transition path. I then examine the drivers of ICT diffusion to help shed light on
the relatively slow diffusion. In the final part of the section, I implement two simple policy
experiments that illustrate the dynamic interactions of firms over the transition path.

5.1 Productivity Growth

Figure 6 reports the path of output growth over the transition path. In the calibration, only
the initial BGP growth rate (gnon = 1.99%) is targeted whereas the long-run and transition
values are implied by model parameters. In the long run, the growth rate (gict = 2.72%)
rises by around 37% because of higher returns to ICT innovations (λict > λnon). However,
the increase only follows after a prolonged growth slowdown over the transition period.

27The model moment is constructed using simulation data for an initial set of 10,000 firms, where the
overall number of firms varies over the simulation. For ease of calculation, the new ICT patenters are taken
to be ICT firms in their first year of adoption.
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Figure 6: Growth Over the Transition Path
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Notes: The figure reports output growth over the transition path. gnon and gict are the growth rates on the
non-ICT and ICT balanced growth paths. The solid line corresponds to the years 1980 to 2000.

The model generates a decline and recovery in productivity growth following the intro-
duction of ICT, consistent with empirical evidence on general purpose technologies (e.g.,
Jovanovic and Rousseau, 2005). Aggregate productivity initially spikes because the intro-
duction of ICT leas to more R&D investment in adoption and non-ICT exploration R&D,
where the latter is driven by an increase in the option value of non-ICT firms. Aggregate
productivity growth falls quickly in early periods and from 1980 to 2000, the average growth
rate is 72% of its initial value on the non-ICT balanced growth path. Growth eventually
recovers reaching its initial value in the 2020s and converging slowly to the ICT balanced
growth rate in the long run.28

The growth slowdown is much longer lived than other channels that explain the growth
decline following ICT’s introduction (e.g., Hornstein and Krusell, 1996; Greenwood and
Yorukoglu, 1997; Yorukoglu, 1998). The length of the growth slowdown stems from the
relatively slow diffusion of ICT across innovations in the data (Figure 1). This implies that
the model is more relevant for the secular slowdown in aggregate productivity growth (e.g.,
Aghion et al., 2019), rather than only explaining the isolated decline in aggregate produc-
tivity growth in the 1970s and 1980s.29 The results also point to a recovery in productivity

28ICT diffusion has a very long tail in the calibrated model, where the ICT product share reaches 90% by
2035, 99% by 2072, and 99.9% after 2100.

29The combination of the results in Figure 6 and other channels explaining the initial drop and recovery in
growth—for example, learning-by-doing with ICT equipment as in Greenwood and Yorukoglu (1997)—would
lead to growth dynamics similar to those documented in the data. The growth dynamics can be superimposed
since the model is unrelated to ICT equipment. The addition of learning-by-doing would imply a sharper
decline following the introduction of ICT followed by a growth acceleration in the early 1990s as firms and
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growth as ICT becomes fully diffused. However, the recovery in Figure 6 does not overtake
the initial growth rate until the 2020s and neglects other channels weighing on growth and
research productivity (e.g., Akcigit and Ates, 2019; Peters and Walsh, 2021; Ayerst, 2020b).

The growth slowdown following the introduction of ICT is closely related to mechanisms
proposed by De Ridder (2020) and Aghion et al. (2021). In both papers and in Figure 6,
aggregate productivity growth initially jumps as some advantaged firms enter the market
and then slows as the disadvantaged firms reduce R&D investment. There are two main
features in my model that are not present in De Ridder (2020) or Aghion et al. (2021). First,
firms endogenously transition from non-ICT to ICT firms over time. This leads to the growth
slowdown in Figure 6 being temporary as eventually there are no disadvantaged non-ICT
firms. That said, the recovery is gradual and so the growth slowdown remains quantitatively
relevant. Second, I use the model structure and the data to inform the introduction of ICT
in the data.30 This leads to the timing of the spike in growth in Figure 6 occurring before
what is found by De Ridder (2020) and Aghion et al. (2021).

To understand the decline in growth over the transition path, I decompose quality growth
g(t) into three channels based on the associated R&D activity:

g(t) =Dnon(t)znonx (t) [Dnon(t) lnλnon] +Dict(t)zictx (t)
[
Dict(t) lnλict + αictDnon(t) lnλictηict

]
︸ ︷︷ ︸

Exploration R&D (=79.1%)

+Dnon(t)za(t) ln ηict︸ ︷︷ ︸
Adoption R&D (=2.1%)

+ ze(t) ln
(
Dnon(t)λnon +Dict(t)λict

)
︸ ︷︷ ︸

Entry R&D (=18.9%)

,

(15)

where the numbers indicate the contribution of each type of R&D to productivity growth
over the 1980-2000 period.

Exploration R&D is the main driver of aggregate growth dynamics over the transition
path. Exploration R&D follows a U-shaped pattern driven by a combination of declining non-
ICT exploration R&D, rising ICT exploration R&D, and an increasing share of ICT products.
The bottom of the curve is the point at which the ICT product share is enough to discourage
non-ICT exploration R&D but not enough that ICT exploration R&D can fully compensate
for the decline. Before (after) this point, increasing the share of ICT products leads to a
larger (smaller) decline in non-ICT exploration R&D than the rise in ICT exploration R&D.

workers learn to use ICT equipment and then a second decline as the gains from learning-by-doing spillovers
fade. This dual slowdown matches growth dynamics in the data (see, for example, Aghion et al., 2019) that
could not be explained by learning-by-doing alone.

30This is not to say that the dates used by De Ridder (2020) or Aghion et al. (2021) are incorrect. While
the overarching mechanisms are similar, the exact mechanisms are different.
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The other two channels account for a small share of growth. Adoption R&D accounts for
a negligible share of growth. This is informed by the slow ICT diffusion in the data, which
the model interprets as adoption being costly relative to its benefits. Entry R&D makes up
the remainder of growth accounting for around one-sixth of total growth over the period,
similar to the value found by Akcigit and Kerr (2018). Entry R&D increases early in the
transition as the value of ICT firms is initially high and the option value from adopting ICT
increases firm value of non-ICT firms but eventually declines as firm values begin to decline
as ICT becomes diffused.31

5.2 Drivers of Diffusion

The decline in growth depends on the share of ICT products Dict(t) over the transition path.
Understanding what drives diffusion is then key to understanding the growth slowdown and
how policy can address it. Diffusion is composed of two channels:

dDict(t)
dt

= αictzictx (t)Dict(t)Dnon(t)︸ ︷︷ ︸
Expansion (=67.3%)

+ Dnon(t)za(t)︸ ︷︷ ︸
Adoption (=32.8%)

, (16)

where the numbers listed indicate the channel’s contribution over the entire transition path.
The expansion channel measures ICT diffusion through ICT firm exploration R&D and

accounts for two-thirds of cumulative ICT diffusion. The importance of the expansion channel
increases over the transition path driven by the combination of rising ICT exploration R&D
(Figure 3b) and the rising ICT product share (Figure 5a). The expansion channel is self-
reinforcing in that ICT exploration R&D increases the share of ICT products leading to
higher knowledge spillovers (see Figure 4a) and more profitable exploration R&D. In the
data, the expansion channel is disciplined by the relative innovation rate of adopters (Table
4) and the relative frequency with which ICT patents cite non-ICT patents.32

The adoption channel measures ICT diffusion through non-ICT firms adopting ICT and
accounts for around one-third of cumulative ICT diffusion. In contrast with the expansion

31Qualitatively, the rise and fall in entry R&D is also consistent with two stylized facts. First, the creation of
new general purpose technologies are associated with a boom in entry activity (e.g. Jovanovic and Rousseau,
2005) as the high market value of new technologies encourages entry. Second, the decline in entry is consistent
with the decline in business dynamism found in the US (see Decker et al., 2014).

32While it is clear that if αict = 0 then the expansion channel is zero, changes in αict would have an offset-
ting effect on the expansion channel if the model is recalibrated. Specifically, lower values of αict increases
the value of non-ICT firms because of lower competition spillovers, which increases non-ICT exploration
innovation znonx (t). The calibration then requires a compensating decrease in the cost of ICT exploration
innovation ψictx in order to match the targeted relative innovation rate. The intuition is similar to the model
extension adding non-ICT spillovers αnon in Appendix D.4.
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channel, the adoption channel is self-cannibalizing in that adoption discourages future adop-
tion since it increases competition spillovers (see δict(t) Figure 4b).33 The relatively lackluster
contribution of the adoption channel is determined by the slow ICT diffusion in the data.

The cumulative contributions are potentially misleading since the adoption channel ac-
counts for most of the early diffusion. In early periods, ICT diffusion can only be driven
by the adoption channel since there are no ICT firms to invest in exploration R&D. While
the expansion channel overtakes the adoption channel relatively quickly, this is only possible
because the economy reaches a critical mass of ICT products to support ICT exploration
R&D. As a result, delaying adoption R&D delays ICT diffusion more than is suggested by
the cumulative share of the adoption channel. In the extreme case, eliminating adoption
R&D outright would stop diffusion. Consequently, it is also important to account for the
interactions between the two channels, which is explored in the next part of the section.

The majority of the existing literature focuses on adoption as the sole channel of diffusion
(e.g. Parente and Prescott, 1994; Yorukoglu, 1998; Comin and Hobijn, 2010; Ayerst, 2020a).
I find that this channel accounts for a relatively small share of cumulative diffusion. This
can be especially misleading for policy because models with only adoption lead to policy
responses that target non-adopters whereas the results in (16) suggests that policy should
also consider previous adopters. This is explored next.

5.3 Policy Experiments

Adoption R&D creates spillovers to other firms through its impact on the distribution of
ICT-related products. Along with the knowledge and competition spillovers from exploration
R&D, there is a role for policy to reduce inefficiencies and improve welfare. Supporting
diffusion can shorten the low-growth transition period and bring the economy to the high-
growth BGP earlier. However, policy is inherently complex because of the forward-looking
dynamics and interconnectedness of the environment. Given this, I explore two simple policy
experiments to provide insights into policy design and highlight the model mechanisms.

The first set of policy experiments implements a simple subsidy or tax on adoption R&D,
such that the net adoption R&D cost becomes (1 − τa)ws(t)nsa(za) for a non-ICT firm
with n product lines. The second set of policy experiments implements a high-tech subsidy
on exploration R&D by ICT firms, such that the net exploration R&D cost becomes (1 −
τ ict)ws(t)nsx(zx) for an ICT firm with n product lines. I focus on a 25% subsidy and tax
for each type of policy. Figure 7 reports diffusion in the policy experiments and Table 8
summarizes the welfare and growth results from the policy experiments.

33Appendix D.3 decomposes adoption R&D into the direct and indirect benefits and reports the contri-
bution of the adoption and expansion channels to ICT diffusion by period.
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Figure 7: ICT Diffusion under Policy Experiments
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(b) High-Tech Policy

Notes: The figure reports diffusion Dict(t) for a 25% tax or subsidy to adoption R&D costs, Panel (a), or
exploration R&D costs of ICT firms, Panel (b).

Both the adoption and high-tech subsidies have the intended effects of increasing diffusion
and shortening the period of slow growth. The adoption subsidy increases early diffusion but
has relatively no effect on later diffusion. The adoption subsidy creates a negative feedback
in which the rise in early diffusion leads to higher competition for ICT firms lowering the
incentives for firms to invest in adoption. In contrast, the high-tech subsidy has a fanning out
effect on diffusion. The high-tech subsidy is self-reinforcing in that higher ICT exploration
R&D increases the share of ICT products making future exploration R&D more profitable.

Table 8 summarizes the change in welfare from the two subsidies as well as the corre-
sponding taxes. Welfare is reported at a short horizon from the introduction of ICT t0 until
2010 and an infinitely forward looking (long) horizon.34 At the short horizon, taxing adop-
tion R&D is beneficial since it delays the drop in aggregate productivity growth, raising
consumption. At the long horizon, subsidizing diffusion becomes more beneficial because it
leads to a shorter low growth period. Welfare becomes relatively more elastic to the high-tech
policy at longer horizons since the high-tech subsidy impacts diffusion in later periods. In
contrast, the magnitude of the adoption policy on welfare is relatively consistent at both
horizons since it has the largest effect early periods.

The final row of the table reports the year that the transition growth rate overtakes
the initial balanced growth path rate, relative to the baseline calibration. In the baseline

34The choice of 2010 is arbitrary for the comparison of welfare. I choose 2010 since it is a mid-point between
the lowest growth rate on the transition path (around 1990) and the point where growth overtakes its initial
value (around 2030). The main intuition of the welfare comparison holds for different constructions of the
time horizons.
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Table 8: Summary of Policy Experiments

Adoption Policy High-Tech Policy
Tax Subsidy Tax Subsidy

Welfare Short Horizon [t0, 2010] (%) 0.15 -0.14 -0.19 0.20
Welfare Long Horizon [t0,∞) (%) -1.10 1.58 -6.60 11.94

Year g(t) ≥ gnon (Change in Years) 3 -5 20 -13

Notes: Welfare values report the change in welfare relative to the baseline economy for a 25% tax or subsidy to
adoption R&D costs or exploration R&D costs of ICT firms. Welfare is reported as a consumption equivalent
(defined in Appendix A.2). The short horizon calculated the change in welfare from the introduction of ICT
(t0) until the year corresponding to 2010. The long horizon calculates the change in welfare over the entire
transition period. Year g(t) ≥ gnon reports the first year (after the initial drop) that growth surpasses
the non-ICT balanced growth path growth rate relative to the benchmark economy. For example, -5 years
indicates the the adoption subsidy reaches a growth rate greater than gnon five years earlier than in the
benchmark economy.

calibration, growth overtakes its initial value in the 2020s (Figure 6). The year changes only
slightly for both the adoption tax and subsidy reflecting that diffusion in Figure 7 is relatively
unchanged. Since the high-tech policies have a large impact on diffusion, it follows that the
high-tech policies also have a large impact on the year that growth overtakes its initial value.
For the subsidy, this occurs 13 years earlier than in the baseline economy.

The experiments have two broad insights for policy design related to new general purpose
technologies (GPTs). First, policies that focus on shorter horizons may incorrectly assess
welfare. Intuitively, shorter horizons place a greater weight on the growth slowdown that
follows the introduction of new GPTs motivating delayed diffusion. At longer horizons, this
is damaging because it causes the economy to remain in the low growth transition for longer.
Second, policies should focus on current users of new GPTs rather than non-adopters. Focus-
ing on non-adopters can be effective in early periods of the transition but creates a negative
feedback that weakens the policy impact over time. Additionally, the window of opportunity
for policymakers is relatively short and requires that policymakers can correctly identify new
GPTs. Focusing on previous GPT adopters tends to be self-reinforcing and is more effective
in later periods when policymakers are more likely to know the value of new GPTs.

6 Conclusion

In this paper, I examine the diffusion of new general purpose technologies (GPTs) and the
consequences for innovation and growth. This paper contributes along three dimensions.
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First, I extend the standard Klette and Kortum (2004) framework to incorporate the adop-
tion and diffusion of ICT. The model highlights that the R&D allocation and intensity of
firms changes over the transition path as ICT diffusion dictates the relative knowledge and
competition spillovers firms face. Second, I construct a measure of ICT-related innovation
using administrative data on patents and citation networks, capturing the idea that the ap-
plications of ICT spurs innovations in other fields. I find that ICT adopter are relatively
better innovators in both patent quality and frequency and that adopters experience a sharp
increase in productivity growth in the years immediately following adoption. Third, I use
the calibrated model to examine the consequences and drivers of ICT diffusion. I find that
most of the diffusion is driven by the expansion of current users rather than new adopters.
Additionally, I provide a new explanation of growth slowdowns following the introduction of
GPTs in which non-users lower R&D investment as the new GPT becomes more prevalent.

The structure of the model is flexible and could be applied to new general purpose tech-
nologies (e.g., artificial intelligence) or other technologies (e.g., green technologies). An in-
teresting application would be to use the model to examine the introduction of artificial
intelligence. Another path for future work would be to extend the framework to examine
cross-country differences in ICT diffusion and technology gaps documented by Comin and
Hobijn (2010) and Comin and Mestieri (2018).
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Online Appendix (Not for Publication)

A Model Appendix

A.1 Description of Equilibrium Production

The final consumption good is taken to be the numeraire. The household’s problem implies
the Euler equation Ċ(t)/C(t) = r(t)− ρ.

The final good producer demands Y (t) units of each good j. Because varieties of good j are
quality-adjusted perfect substitutes, the final good producer only purchases good j from the
firm that offers the lowest price-per-quality pjf/ηjf qjf . This implies that the quality leader
f = L sets the limit price given the quality of the follower f = F such that pj(t) = µjw(t)
where the markup is µj = ηjLqjL/ηjF qjF and w(t) is the wage rate. The labor and output
allocated to good j are kj(t) = `j(t) = Y (t)/(µjw(t)).

Markup distribution. Prices depend on the quality leadership of the current producer.
Markups take one of four values in equilibrium {λnon, λict, ηictλict, ηictλnon}. The first two
values correspond non-ICT and ICT firms innovating on goods with the same technology.
The third value occurs when ICT firms successfully innovate on goods produced by non-ICT
firms. The fourth value occurs when non-ICT firms adopt ICT increasing the markup from
λnon to ηictλnon. The distribution Φ(µ, t) of markups is characterized by the law of motion:

Φ̇(µ, t) =



(znonx (t)Dnon(t) + ze(t)− za(t))Dnon(t)− δnon(t)Φ(λnon, t) for µ = λnon

(zictx (t)Dict(t) + ze(t))Dict(t)− δict(t)Φ(λict, t) for µ = λict

αictzictx (t)Dict(t)Dnon(t)− δict(t)Φ(ηictλict, t) for µ = ηictλict

za(t)Dnon(t)− δict(t)Φ(ηictλnon, t) for µ = ηictλnon

.

(17)

In what follows, I refer to goods by the markup charged by the current producer, rather than
the index j, since this describes the price and labor and output allocations of the good.

Allocations, prices, and output. Labor market clearing requires that 1 =
∫
j `jdj. The

equilibrium wage rate that clears the labour market is equal to:

w(t) = q̄(t)
∑

µ
µ−1Φ(µ, t), (18)

where q̄(t) = exp
∫ 1

0 ln qjdj is the average quality of goods.
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Given the wage rate, the price, output, and labor allocated to good j can be written in
terms of the markup as:

p(µ, t) = µw(t), k(µ, t) = `(µ, t) = µ−1∑
µ µ−1Φ(µ, t) . (19)

Intuitively, Cobb-Douglas preferences imply that expenditure on each good is the same and
so there is less production of goods with higher prices.

The goods market clearing requires that all intermediate inputs are used in the production
of the final consumption good and that the final consumption good is used for consumption
or R&D, Y (t) = C(t)+ψeze(t)+∑κ∈{T,M}Dκ(t)sx(zx, t)+Dnon(t)sa(za, t). Aggregate output
depends on both the distribution of markups across goods and the average quality of goods:

Y (t) = χ(t)q̄(t), (20)

where χ(t) = exp (∑ι lnµ−1
ι Φ(µι, t))/

∑
ι µιΦ(µι, t) ≤ 1 describes misallocation from disper-

sion in markups. This output loss from markup dispersion is examined by Peters (2016)
while the loss in growth from persistent markup differences is examined by Ayerst (2020b).

A.2 Additional Model Results and Outcomes

Welfare Welfare over a period [t, t̄] is calculated as:

W =
∫ t̄

t
e−ρt̂ log(C(t̂))dt̂.

The policy experiments compare the change in welfare using the consumption equivalent. Let
C̃(t) be the series of consumption under the proposed policy and C(t) be the consumption
under the baseline scenario. The consumption equivalent ξ solves:

∫ t̄

t
e−ρt̂ log((1 + ξ)C(t̂))dt̂ =

∫ t̄

t
e−ρt̂ log(C̃(t̂))dt̂. (21)

Balanced Growth Path Equilibrium Proposition 2 characterizes the balanced growth
path equilibrium.

Proposition 2. If ze > 0, the κ ∈ {non, ict} technology balanced growth path (BGPκ) is
characterized by the innovation rates

zκx =
(
ψe
ζxψκx

) 1
ζx−1

ze = 1
ψe

[
(1− (λκ)−1) + ψκx(zκx)ζx

]
− ρ− zκx
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and if ze = 0 then zκx = [(Bκ + (1 − (λκ)−1)vκ)/ζψκx ]1/(ζx−1) is implicitly defined along with
the value function below. The creative destruction and growth rates

δ = ze + zκx g = δ ln λκ;

and the value function

V κ
n = Y (t)

[
Bκ + vκ(1− (λκ)−1)

]
n

where

vκ = 1
ρ+ zκx + ze

Bκ = ψκx(ζx − 1)
ρ+ zκx + ze

(zκx)ζx .

Proof The balanced growth path (BGP) equilibrium requires that only one technology κ
can be used by firms. This follows from the law of motion for the ICT product share:

dDict(t)
dt

= za(t)Dnon(t) + αictzictx (t)Dnon(t)Dict(t)

which can only equal 0 under one of three cases: (1) αictzictx (t) = za(t) = 0 withDnon(t),Dict(t) >
0; (2) Dnon(t) = 0; or (3) za(t) = 0 and Dict(t) = 0. The first case is ruled out by assumption
that there is some adoption za(t) > 0 for some t and that αict > 0. The exploration R&D
cost function implies that ICT firms always choose positive zictx (t) at non-infinite R&D costs.
The second and third cases represent the non-ICT and ICT BGPs.

To solve the BGP values, I use the guess and verify method with guess:

V κ
n = Y

[
Bκ + vκ(1− (λκ)−1)

]
n.

Plugging the guess into the value function and solving for zκx implies that zκx = [V κ
1 /ζxψ

κ
x ]1/ζx−1.

If entry is positive then the entry condition implies that V κ
1 = ψeY and innovation intensities

are:

zκx =
(
ψe
ζxψκx

) 1
ζx−1

ze = 1
ψe

[
(1− (λκ)−1) + ψκx(zκx)ζx

]
− ρ− zκx

If entry is zero, then the value function takes the same form and zκx = [(Bκ+(1−(λκ)−1)vκ)/
ζψκx ]1/(ζx−1) follows from solving the firm’s problem. The growth rate is g = [zκx + ze] lnλκ =
δ ln λκ with the values of zκx and ze given above.

Finally, substituting the optimal value of R&D intensity zx and the creative destruction
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rate δ into the value function, confirms the guess for values:

vκ = 1
ρ+ zκx + ze

Bκ = ψκx(ζx − 1)
ρ+ zκx + ze

(zκx)ζx .

A.3 Transition Path Solution

Proof of Proposition 1: For brevity, I write the problem of a firm with technology κ to
include adoption with the understanding that the benefit of adoption is equal to zero for
ICT firms. The discrete approximation of the value function is

V κ
n ([µi], t) = max

zκx ,z
κ
a

[
n∑

i′=1
(1− µ−1

i′ )Y (t)
]

∆t− n [sx(zx) + sa(za)]Y (t)∆t+ o(∆t)

+ exp{−r(t)∆t}


∑n
i′=1 [(δκ(t)∆t)V κ

n ([µi]/{µi′}, t+ ∆t)]
+ (zκxn∆t)

[
Dκ(t)V κ

n+1([µi] ∪ {λκ}, t+ ∆t) + ακD−κ(t)V κ
n+1([µi] ∪ {ηκλκ}, t+ ∆t)

]
+ (zκan∆t)V ict

n ([ηictµi], t+ ∆t) + (1− (δκ(t) + zκx + zκa )∆t)V k
n ([µi], t+ ∆t)

 .

I solve the value function using the guess and verify method, with guess:

V κ
n ([µi], t) =

n∑
i=1

[
Bκ(t) + vκ(t)(1− µ−1

i )
]
Y (t).

Using the above guess, the implied policy functions are given by:

zκx(t) =
[
e−(r(t)−gY (t))∆tDκ(t)[vκ(t)(1− (λκ)−1) +Bκ(t)] + ακD−κ(t) [v(t) (1− (ηκλκ)−1) +Bκ(t)]

ζxψκx

] 1
ζx−1

za(t) =
e−(r(t)−gY (t))∆tv

ict(t)1−(ηict)−1

λnon
+ [vict(t)(1− (λnon)−1) +Bict(t)]− [vnon(t)(1− (λnon)−1) +Bnon(t)]

ψaζa

 1
ζa−1

.

As ∆t→ 0 the policy functions imply the functions given in Proposition 1. Substituting the
policy functions into the firm’s problem implies that the value function is described by the
equations:

vκ(t)− e(gY (t)−r(t))∆tvκ(t+ ∆t) = ∆t− e(gY (t)−r(t))∆t(δκ(t)∆t)vκ(t+ ∆t) + o(∆t)

Bκ(t)− e(gY (t)−r(t))∆tBκ(t+ ∆t) = −
[
ψκx(zκx(t))ζx + ψa(za(t))ζa

]
∆t− e(gY (t)−r(t))∆t(δκ(t)∆t)Bκ(t+ ∆t)

+ e(gY (t)−r(t))∆t(zκx(t)∆t)
[
Dκ(t)[vκ(t)(1− (λκ)−1) +Bκ(t)] + ακD−κ(t)

[
v(t)

(
1− (ηκλκ)−1

)
+Bκ(t)

]]
+ e(gY (t)−r(t))∆t(za(t)∆t)

[
vict(t)(1− (ηictλnon)−1) +Bict(t)− vnon(t)(1− (λnon)−1)−Bnon(t)

]
+ o(∆t).

Setting r(t) = ρ+ gC(t) (from the household’s Euler equation) and taking the limit ∆t→ 0
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implies that the components of the value function are described by the differential equations:

(ρ+ (gC(t)− gY (t)) + δκ(t))vκ(t)− v̇κ(t) = 1

(ρ+ (gC(t)− gY (t)) + δκ(t))Bκ(t)− Ḃκ(t) = ψκx(ζx − 1)(zκx(t))ζx + ψa(ζa − 1)(za(t))ζa .

A.4 Technology-Specific Spillovers

In this Appendix Section, I discuss a simple extension of the model that endogenizes the cross-
technology spillovers. The extended model assumes that innovations do not build perfectly
on cross-technology products and fail when the innovating firm is unable to charge a lower
price-per-quality than the incumbent producer. I use the extended model to show that the
model has the same structural parameters as in the baseline model.

As in the baseline model, the technology-specific quality component for non-ICT firms
is normalized ηnon = 1 while the ICT quality ηict = η is drawn from a Pareto distribution
with CDF 1 − η−γ. When a firm using the κ technology draws a product produced with
the other κ′ 6= κ technology they pay a productivity cost described by b ≤ 1 such that the
overall step size becomes λb. In a reduced form, the cost b captures many of the difficulties
of moving into new technology markets. The cost b can be thought of as capturing some
incompatibilities between producing goods with a different general purpose technologies or
applying innovations stemming from the use of ICT to new markets. For example, consider
the difficulty of an ICT-using car manufacturer moving into an adjacent non-ICT market
(e.g., motorcycles). The application of the ICT-related technology (e.g., electronic control
unit) may require additional R&D to be applied to the new good or the production process
used by the ICT-using car manufacturer may not be suitable for the newly innovated good,
requiring additional costs such as changing machinery or intermediate input suppliers. Bryn-
jolfsson and Hitt (2000) provides several examples of the difficulties faced by specific firms
transitioning to ICT. Alternatively, if the innovation is developed from the insights in the
production of ICT-using cars (what Klette and Kortum (2004) refer to as knowledge capital)
then the innovation itself may be incompatible with the targeted good and require additional
investment to bridge this gap. The cost could also be thought of as capturing the difficulties
of moving to cross-technology markets. For example, a smartphone manufacturer may have
the technical capabilities to expand into adjacent non-ICT markets (e.g., watches) but the
costs may be prohibitively high or the consumer base too small to justify the benefits. The
explanation is more similar to the modeling of Aκ(t) in the baseline model where ακ captures
a bias towards same-technology innovations.
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The probability that a ICT firm innovates on a non-ICT product is then given by

αict = Pr[λictηb > 1] = min
{

(λictb)γ, 1
}
.

The probability that a non-ICT firm innovates on an ICT product is given by

αnon = Pr
[
λnonb > ηλict

]
= max

0, 1−
(
λnonb

λict

)−γ ,
where the baseline assumption that non-ICT firms do not innovate on ICT products requires
parameters to be set such that b < λict/λnon. The values of αnon and αict are then implied
by the parameters b and γ. In this regard, the cross-technology spillovers ακ in the baseline
model nests a structure in which firms require an additional cost to build on cross-technology
products.

B Empirical Appendix

B.1 Additional Summary Statistics

Table 9 reports summary statistics on the final set of innovative Compustat firms.

Table 9: Firm Summary Statistics

Statistic Adopters Non-Adopters All
Observations 7,357 15,324 22,681
Initial Type 316 1,284 2,600
Final Type 1,369 1,231 2,600

The final dataset contains information on 22,681 firm-year observations from 2,600 unique
firms. The initial and final types report the firm’s type for the first and last observations in
the dataset. While this does not directly correspond to the beginning and end of the sample,
the comparison shows that a large fraction of firms adopt ICT over the sample.

B.2 Distance Cutoff

To estimate the appropriate distance to cutoff ICT-related patents, I perform a variation
of the exercise in Section 3 in which I examine firm-level responses to adoption based on

45



different measures of distance. The set of ICT patents is defined as:

ICT-Related Patents = ∪d̄d=0Pd.

The cutoff d̄ is the maximum distance from the Computers & Communication technology
class included in the set of ICT-related patents, which is taken to be d̄ = 3 in the baseline
analysis. Table 10 summarizes the number of new firm observations in each distance category.

Table 10: Observations by Patent Distance

Distance Observations
0 624
1 165
2 186
3 129
4 85

The table shows that higher distances include relatively fewer observations. A caveat
with the values in the table above is that the minimum distance is time independent. That
is, increasing the cutoff may lead to some firms adopting earlier because they issue higher
distance patents before lower distance patents. This leads to a downward bias of the estimated
response at lower cutoffs to the extent that the "true" adoption date is missed.

The decision of the cutoff weighs the benefits of including a broader set of potentially
ICT-related patents against the cost of mislabeling patents as being ICT-related. Given this,
I set the cutoff d̄ based on the response of firms following ICT adoption. The main idea
being that the response captures a change at the firm (ICT adoption) implying that smaller
response indicates a worse measure of adoption. This favors classifying ICT-related patents
as non-ICT patents if at higher distances smaller responses are likely to be observed. I base
the cutoff on is the empirical response of labour productivity to adoption estimated as:

gf,t = β0 +
∑

s=0,−1,−2
βA,sAdoptf,t+s + Xf,tβX + Γs + Γt + εf,t

where Adoptf,t is the year in which firm f ’s patent portfolio exceeds 10% patents with
distance d ≤ d̄. The same controls and fixed effects as in the main text are included. Table 11
reports the results for different cutoffs d̄. The three citation link cutoff performs comparably
better than the other specifications and is consequently used as the baseline.
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Table 11: Distance Cutoff

Sales / Emp. Growth
(1) (2) (3) (4) (5)

Adopt t 0.0118 0.0232 0.0460** 0.0500*** 0.0336
(0.0349) (0.0334) (0.0225) (0.0175) (0.0225)

Adopt t-1 0.0691** 0.0493* 0.0638** 0.0702** 0.0587***
(0.0327) (0.0289) (0.0240) (0.0283) (0.0217)

Adopt t-2 0.0554*** 0.0385* 0.0502*** 0.0652*** 0.0624***
(0.0130) (0.0220) (0.0141) (0.0166) (0.0188)

Cutoff Distance d̄ = 0 d̄ = 1 d̄ = 2 d̄ = 3 d̄ = 4
R2 0.0421 0.0418 0.0426 0.0433 0.0430
Observations 16378 16378 16378 16378 16378

Notes: * p < 0.10, ** p < 0.05, *** p < 0.01. Robust standard errors, clustered at the 2 digit SIC level are
in parenthesis. Year level and 4 digit SIC fixed effects are included in all columns. Baseline controls include:
the log of one plus the number of (forward) citations received by the patents applied for by firm f in period
t; log of firm size (measured by employment); the log of one plus the firms R&D expenditure over sales; firm
age in period t; as well as dummy variables to control for whether firm f patents in period t, whether firm
f issues their first patent in period t and whether firm f issues a Computers & Communications patent in
period t. Unreported R&D is taken to be equal to 0.

B.3 ICT-related Products

In this appendix section, I discuss the construction of the ICT-related product measure
and discuss the implications for the model structure. ICT-related products provide a useful
benchmark to compare the model predictions and structure with data.

I adapt the basic classification of products from Acemoglu et al. (2016a) who examine
within product competition between clean and dirty products. I define products j at the US
three-digit classification (product class) level to maintain the full sample of the patent data.
I construct the total stock of κ-related patents Kκ

j,t in period t for product j as:

Kκ
j,t = 0.9Kκ

j,t +Nκ
j,t,

where Nκ
j,t is the number of κ-related product j patents issued in period t. The set of ICT-

related products is then constructed as:

J ict
t =

{
j ∈ J |Kict

j,t > 0.25(Kict
j,t +Knon

j,t ) or j ∈ J ict
t−1

}
.

ICT-related products are those that hit a certain threshold (25%) or have hit that threshold
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in the past. I set the weights at 25% in the baseline analysis to capture the idea that the
products are trending towards ICT-related patents, but Figure 8 shows that the results are
similar if 50% is used as a threshold instead. The share of ICT-related products is given by

D̂ictt =
∑

j∈J ictt

Wj

where Wj is the weight of product j and is set equal to total share of product j patents over
the entire period. To construct the above measures, I use the full sample of data and then
trim to the same sample (1980-2000) used in the main analysis.

I also construct a measure of relative quality of ICT-related products as citation share of
ICT-related patents divided by the patent share. Relative quality increases if ICT-related
products receive more citations on average than other products. Figure 8 plots the implied
ICT-related product share D̂ictt and the relative quality of ICT-related products.

Figure 8: Diffusion by ICT-Related Products
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(b) Alternative Cutoffs

Notes: ICT-related products are defined as technology classes with at least 25% ICT-related patents. ICT
Product Share measures the total number of patents associated with ICT products divided by total patents.
Avg. ICT Citations measures total citations on ICT-related products divided by total citations on all patents
divided by the number of ICT-related products.

The figure highlights that the share of ICT-related products increases from around 20%
in 1980 to around 50% in 2000, consistent with the ICT product share implied by the model.
The relative quality measure provides an additional test on the model structure. The model
assumes that the entirety of diffusion is driven by the increase in the number of ICT-related
products and not an increase in the relative quality of ICT-related products. The stability
of the relative quality of ICT products is consistent with this view.
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B.4 Extensive and Intensive Margins of ICT Diffusion

The model structure assumes that the diffusion of ICT occurs through the application of
ICT ideas to new goods. An alternative possibility is that the share of ICT goods remains
relatively constant over time, but that the relative quality of ICT-related goods increases.
Figure 9 tests this alternative by comparing the unweighted patent share and the relative
average citations received on ICT-related patents over the sample, which act as stand-ins for
the share of ICT products Dict(t) and the relative quality of innovations ln λict/ ln λnon in
the model. The figure shows that ICT diffusion is primarily through new patents, consistent
with the model structure. While ICT-related patents experience an advantage in terms of
citations, this advantage appears to be relatively constant throughout the sample.

Figure 9: Intensive and Extensive Margins of ICT Diffusion
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Notes: The figure reports the extensive and intensive margins of the citation-adjusted ICT-related patent
share. ICT Patent Share measures the unweighted share of ICT-related patents. Rel. ICT Quality measures
the average citations received by ICT-related patents divided by the average citations received by non-ICT-
related patents.

B.5 Robustness of Main Results

The central result in the empirical analysis is the relationship between firm-level sales-per-
employee growth and adoption. This serves to validate the measure and is also used as a
target in the calibration. In this appendix section, I consider the robustness of the results to
alternative specifications and controls. The empirical specification is given by:

gXf,t = β0 +
∑

s=0,−1,−2
βA,sAdoptf,t+s + Xf,tβX + Γs + Γt + εf,t (22)
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where gXf,t is the growth in variable X in period t and other variables are defined as in the
main text. I focus on the period of and two periods following adoption to simplify reporting.

Alternative Controls Table 12 presents robustness of the main firm-level regression under
alternative controls. Column (1) presents the set of baseline controls, which serves as the
baseline specification for the robustness analysis. Columns (2) and (3) alter the measure of
R&D intensity to exclude missing values or measure a firm’s cumulative R&D stock. Both
alternatives do not have a substantial effect on the results. Column (4) uses an alternative
measure of firm size (assets) in place of the baseline measure (employment). Column (5) adds
the adopter variable which takes value one in all periods including and following the firm’s
adoption of ICT. The estimated coefficient is statistically insignificant and small indicating
that adoption does not lead to a long-term increase in the adopting firm’s labor productivity
growth rate, consistent with the model.

Table 12: Alternative Controls

Sales / Emp. Growth
(1) (2) (3) (4) (5)

Adopt t 0.0500*** 0.0532*** 0.0525*** 0.0523*** 0.0513***
(0.0175) (0.0180) (0.0178) (0.0179) (0.0183)

Adopt t-1 0.0702** 0.0709** 0.0665** 0.0705** 0.0715***
(0.0283) (0.0308) (0.0267) (0.0282) (0.0259)

Adopt t-2 0.0652*** 0.0763*** 0.0608*** 0.0665*** 0.0664***
(0.0166) (0.0176) (0.0163) (0.0166) (0.0151)

Adopter -0.00240
(0.00923)

Alt. Controls Baseline Drop Missing R&D R&D Stock Assets Adopter
R2 0.0433 0.0448 0.0427 0.0390 0.0433
Observations 16378 11927 16378 16378 16378

Notes: * p < 0.10, ** p < 0.05, *** p < 0.01. Robust standard errors, clustered at the 2 digit SIC level are in
parentheses. Year and 4 digit SIC fixed effects are included in all columns. Baseline controls include: the log of
one plus the number of (forward) citations received by the patents applied for by firm f in period t; log of firm
size (measured by employment); the log of one plus the firms R&D expenditure over sales; firm age in period
t; as well as dummy variables to control for whether firm f patents in period t, whether firm f issues their first
patent in period t and whether firm f issues a Computers & Communications patent in period t. Unreported
R&D is set to 0. Column (2) removes unreported R&D. Column (3) adds log of one plus the R&D stock
and remove R&D from the controls. R&D stock is calculated as R&D Stockt = R&Dt + 0.90R&D Stockt−1.
Column (4) adds log of total assets as a control and removes log employment. Column (5) add an adopter
control for whether the firm has adopted the technology prior to or in period t.
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Alternative Sector Definitions Table 13 reports the results using different sectoral def-
initions. The baseline specification defines sectors at the 4 digit SIC level. The results in
columns (2) and (3), which change the sector definitions to SIC 3 and SIC2, are quantita-
tively similar to the baseline specification in column (1). Both sector definitions are broader
than considered in the baseline specification. Column (4) examines firm-level controls in place
of sector-level controls. This is the narrowest control and captures additional heterogeneity
across firms, such as innovator heterogeneity, that could potentially drive the estimates. The
overall impact of adoption is similar to the baseline regression, but the coefficients indicate
that the gains to productivity growth are closer to the adoption date.

Table 13: Alternative Sector Definition

Sales / Emp. Growth
(1) (2) (3) (4)

Adopt t 0.0500*** 0.0515*** 0.0508*** 0.0765***
(0.0175) (0.0171) (0.0167) (0.0175)

Adopt t-1 0.0702** 0.0735** 0.0719** 0.0571*
(0.0283) (0.0319) (0.0309) (0.0290)

Adopt t-2 0.0652*** 0.0686*** 0.0687*** 0.0319*
(0.0166) (0.0160) (0.0151) (0.0180)

Sector Definition Baseline SIC 3 SIC 2 Firm-Level
R2 0.0433 0.0359 0.0276 0.237
Observations 16378 16382 16387 16101

Notes: * p < 0.10, ** p < 0.05, *** p < 0.01. Robust standard errors, clustered at the 2 digit SIC level
are in parentheses. Year and sector level fixed effects are included in all columns. Sectors are defined as
indicated. Baseline controls include: the log of one plus the number of (forward) citations received by the
patents applied for by firm f in period t; log of firm size (measured by employment); the log of one plus the
firms R&D expenditure over sales; firm age in period t; as well as dummy variables to control for whether
firm f patents in period t, whether firm f issues their first patent in period t and whether firm f issues a
Computers & Communications patent in period t. Unreported R&D is set to 0. Age is dropped as a control
when the Sector is defined at the firm-level.

Alternative Outcomes Table 14 reports the results using alternative measures of growth.
The baseline results focus on sales-per-employee because this measure is the most relevant for
the calibration since it directly relates to the parameter ηict in the model. The results in table
14 show that qualitatively the results holds for sales, employment and capital. Together, the
results show that firms become larger following ICT adoption.
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Table 14: Alternative Outcomes

(1) (2) (3) (4)
Sales/Emp. Growth Sales Growth Emp. Growth Asset Growth

Adopt t 0.0500*** 0.0909*** 0.0446** 0.0495
(0.0175) (0.0299) (0.0200) (0.0312)

Adopt t-1 0.0702** 0.102*** 0.0463*** 0.126***
(0.0283) (0.0232) (0.0170) (0.0269)

Adopt t-2 0.0652*** 0.0929*** 0.0342*** 0.0108
(0.0166) (0.0161) (0.00856) (0.0124)

R2 0.0433 0.0863 0.115 0.0898
Observations 16378 16378 16378 16376

Notes: * p < 0.10, ** p < 0.05, *** p < 0.01. Robust standard errors, clustered at the 2 digit SIC level are
in parentheses. Year level and 4 digit SIC fixed effects are included in all columns. Baseline controls include:
the log of one plus the number of (forward) citations received by the patents applied for by firm f in period
t; log of firm size (measured by employment); the log of one plus the firms R&D expenditure over sales; firm
age in period t; as well as dummy variables to control for whether firm f patents in period t, whether firm
f issues their first patent in period t and whether firm f issues a Computers & Communications patent in
period t. Unreported R&D is taken to be equal to 0.

Alternative Estimator Callaway and Sant’Anna (2021) develop an alternative estimator
to deal with two-way fixed effects. Table 15 reports the results from this estimator when the
comparison group is taken to be either the not yet and never treated group. I report the
consolidated results for the four periods ahead lead and lag and suppress the remaining
results for readability. For the most part, the results outside of this range lacks statistical
significance. The results are broadly consistent with the baseline results, albeit with weaker
significance, in that labor productivity growth increases around the time of adoption and
remains elevated for several periods after, before reverting to its-pre-adoption average.

B.6 Alternative Firm and Patent Cutoffs

In the baseline construction of variables, I use a 10% cutoff for both ICT-related patents and
firms. The cutoff is chosen such that the typical patent would quality with a single patent
since the median patent has close to 10 citations. The cutoff is included to prevent patents
that cite more frequently and firms that issue more patents from being mechanically more
likely to be labeled as ICT-related. In this appendix section, I examine the robustness of
the main results to using 0% and 20% cutoffs in place of the baseline 10% cutoff for both
definitions. I also examine an adjustment to a 10% depreciation per year of past patenting
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Table 15: Callaway and Sant’Anna (2021) Estimation Results

Not Yet Never
Coefficient SE Coefficient SE

Tm4 -0.0537 (0.0443) -0.0523 (0.0440)
Tm3 -0.0176 (0.0399) -0.0203 (0.0395)
Tm2 0.0301 (0.0356) 0.0292 (0.0350)
Tm1 -0.0337 (0.0332) -0.0343 (0.0329)
Tp0 0.0552 (0.0320) 0.0550 (0.0315)
Tp1 0.0189 (0.0301) 0.0179 (0.0298)
Tp2 0.0339 (0.0391) 0.0311 (0.0391)
Tp3 0.0686 (0.0389) 0.0636 (0.0389)
Tp4 0.0597 (0.0435) 0.0545 (0.0437)

Notes: Outcome variable is growth in firm labor productivity gf,t. Not Yet and Never refer to the estimator
using the not yet treated and never treated groups as the comparison. TmX refers to the adoption period
minus X periods. TpX refers to the adoption period plus X periods.

for the ICT-related firm definition. Table 16 summarizes the results
The table shows that the results are robust to alternative cutoff rules. Except for the

20% patent cutoff, all of the estimated coefficients are also statistically significant. The 20%
patent cutoff is mechanically the most restrictive as patent citations are a more continuous
measure and so the change in cutoff leads to a large change in the number of ICT-related
patents. Overall, the similarity of the estimates provides reassurance that the cutoff rules
are not driving the results.

B.7 Placebo Groups

A concern with the measure of ICT-related patents is that the links between patents are
correlated with some other aspect of innovation that are not specific to ICT. For example,
it could be the case that building on patents in other technology classes is inherently valu-
able. To address this concern, I consider several placebo groups and use them to construct
alternative measures of adoption. I then perform the same analysis on the placebo groups
as on the baseline measure of ICT diffusion. The hypothesis is that these groups should not
be related to firm growth as they do not capture ICT adoption. On the other hand, if there
is an underlying variable picked up by the construction of the ICT group, then these groups
should also pick up this relationship. I consider five placebo groups corresponding to other
technology classes (Chemicals, Drugs, Electronics, Mechanics, and Other). These groups are
constructed following an identical methodology as with the baseline group. Table 17 presents
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Table 16: Alternative Cutoff Assumptions

Sales / Emp. Growth
(1) (2) (3) (4) (5) (6)

Adopt t 0.0515*** 0.0362 0.0481*** 0.0415* 0.0400** 0.0484***
(0.0171) (0.0231) (0.0178) (0.0208) (0.0160) (0.0168)

Adopt t-1 0.0735** 0.0482 0.0761** 0.0742** 0.0626** 0.0704**
(0.0319) (0.0354) (0.0293) (0.0311) (0.0254) (0.0297)

Adopt t-2 0.0686*** 0.0573*** 0.0700*** 0.0754*** 0.0546*** 0.0668***
(0.0160) (0.0144) (0.0188) (0.0168) (0.0146) (0.0141)

Alt. Cutoff Baseline 20% Pat. 0% Pat. 20% Firm 0% Firm 10% Dep.
R2 0.0359 0.0264 0.0280 0.0276 0.0271 0.0276
Observations 16382 16387 16387 16387 16387 16387

Notes: * p < 0.10, ** p < 0.05, *** p < 0.01. Robust standard errors, clustered at the 2 digit SIC level are in
parentheses. Year and 2 digit SIC sector-level fixed effects are included in all columns. All columns include
the log of one plus the number of (forward) citations received by the patents applied for by firm f in period
t; log of firm size (measured by employment); the log of one plus the firms R&D expenditure over sales;
firm age in period t; as well as dummy variables to control for whether firm f patents in period t, whether
firm f issues their first patent in period t and whether firm f issues a Computers & Communications patent
in period t. Unreported R&D is taken to be equal to 0. Modification indicates the change in the definition
of ICT-related patents and firms used to construct the adoption variables. X% patent changes the cutoff
used for ICT-related patents to X% from 10% in the baseline analysis. X% firm changes the cutoff used for
ICT-related firms to X% from 10% in the baseline analysis. 10% dep. changes the firm portfolio calculation
to a 10% deprecation rate from 0% in the baseline analysis.

the estimates for adoption based on the other technology class.
The results in Table 17 show that only adoption based on the Computers & Commu-

nications technology classes leads to a positive and statistically significant increase in firm
productivity. The results for adoption based on the Drug and Mechanics technology classes
lead to productivity falling after adoption. The results are consistent with the hypothesis
that the application of ICT to other areas is capturing a fundamental change to firms.

B.8 Entrant Adoption

Entrants enter the market by innovating on an existing good to become the new leading-
edge producer of that good. The baseline model assumes that entrants use ICT if the current
producer of the good uses ICT. However, it may be the case that entrants have a comparative
advantage with ICT because they are not restricted by previous practices. In this appendix
section, I examine the role of entrant adoption.
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Table 17: Labour Productivity Growth and Adoption

Sales / Emp. Growth
(1) (2) (3) (4) (5) (6) (7)

Adopt Chem -0.00323 0.0130
(0.0326) (0.0324)

Adopt C&C 0.0382** 0.0471*
(0.0185) (0.0256)

Adopt Drug -0.0480** -0.0536***
(0.0223) (0.0174)

Adopt Elec 0.0180 0.0143
(0.0282) (0.0385)

Adopt Mech -0.0382* -0.0592**
(0.0214) (0.0232)

Adopt Other 0.00856 0.0230
(0.0228) (0.0229)

R2 0.0413 0.0415 0.0415 0.0413 0.0415 0.0413 0.0423
Observations 16378 16378 16378 16378 16378 16378 16378

Notes: * p < 0.10, ** p < 0.05, *** p < 0.01. Robust standard errors, clustered at the 2 digit SIC level are
in parentheses. Year level and 4 digit SIC fixed effects are included in all columns. Controls include: the log
of one plus the number of (forward) citations received by the patents applied for by firm f in period t; log
of firm size (measured by employment); the log of one plus the firms R&D expenditure over sales; firm age
in period t; as well as dummy variables to control for whether firm f issues their first patent in period t and
whether firm f issues a Computers & Communications patent in period t. Unreported R&D is set to 0.

I define entrants as first-time assignees in the patent database. I use the model to construct
a measure of entrant comparative advantage that can be analyzed in the data. Let αe(t) ∈
[0, 1] be the probability that an entrant that draws a non-ICT good and enters as an ICT firm.
In discrete time, the mass of ICT entrants in period t is ze(t) [Dict(t− 1) + αe(t)Dnon(t− 1)].
For the empirical comparison, I approximate the share of ICT products Dict(t) with the share
of ICT patents.35 The comparative advantage of entrants with ICT can be written as:

CAt = ICT Entrantst
Entrantst︸ ︷︷ ︸

≈Dict(t−1)+αeDnon(t−1)

− ICT-Related Patentst−1

Total Patentst−1︸ ︷︷ ︸
≈Dict(t−1)

. (23)

35In the baseline calibration the average ICT citation share is 49% while the average ICT product share is
37% over the period from 1980 to 2000. Together this would imply that the estimates value of αe is around
30% larger than indicated by the constructed value of CAt.
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The term CAt is the ICT entrants beyond what is implied by the prior stock of knowledge.
The value of CAt is positive if entrants have a comparative advantage (αe > 0).

Estimating the average value of CAt controlling for differences across technology class
implies an average value of αe = 2.5%, which indicates that an entrant that draws a non-
ICT good will become an ICT firm 2.5% of the time.

C Other Testable Model Predictions

In this appendix section, I compare the model predictions with data to provide additional
support for the fit of the model.

C.1 ICT Innovations

The model assumes that firms after a firm adopts ICT it only produces ICT-related innova-
tion. While this does not hold in a strict sense in the data, I use the data to test the extent
that adopters are more likely to issue ICT-related patents. I estimate:

ICT-Related Patentf,t = exp
{

1.757
(0.0084)

∗ Adopterf,t + Γc,t
}

+ εf,t (24)

where the number in parentheses is the robust standard error. The estimate shows that
adopters are around six times more likely to apply for ICT-related patents than non-adopters.

C.2 Innovation Value

The model also makes predictions about firm value over the transition. I use the patent value
measures developed by Kogan et al. (2017) to examine how innovation value changes over
time. The advantage of using innovation value, as opposed to firm value, is that it does not
rely on observing the number of products that a firm operates and is directly related to the
innovative value of the firm. Figure 3a makes two predictions about firm value V κ

1 (µ): (i)
ICT firm innovations are relatively more valuable than non-ICT firm innovations; (ii) ICT
firm innovations become relatively less valuable over time. Table 18 summarizes the results.

The estimates are consistent with the model predictions. Column (1) shows that adopters
have higher estimated patent values compared with non-adopters. The results also serve as a
robustness check to Table 4 by showing that the higher quality of adopter innovations holds
using an alternative measure. Column (2) shows that adopter patents are relatively more
valuable in early periods and that the relative value compared with non-adopters diminishes
over time, consistent with the second prediction.
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Table 18: Patent Value by Firm Type

log Patent Value
(1) (2)

Adopter 0.100*** 0.424***
(0.00651) (0.00820)

Adopter × t -0.0398***
(0.000590)

Observations 523173 523173

Notes: * p < 0.10, ** p < 0.05, *** p < 0.01. Robust standard errors are reported in parentheses. All columns
include firm-level fixed effects, technology class fixed effects, and year fixed effects. Period t is defined such
that 1980 is t = 0.

C.3 Innovation Frequency

The model makes three predictions about the exploration innovation frequency Aκ(t)zκ(t)
over the transition: (i) ICT firms innovate relatively less frequently in the early periods;
(ii) ICT firms innovate relatively more frequently over time; and (iii) on average, ICT firms
innovate relatively more frequently over the 1980 to 2000 period. The third prediction is
directly targeted in the model calibration and so it holds by construction. The first and
second predictions can be tested using the patent data. Table 19 summarizes the results.

Table 19: Innovation Frequency by Firm Type

Unweighted Citation Weighted
(1) (2) (3) (4)

Adopter 0.888*** -0.237*** 1.014*** -0.439***
(0.0553) (0.0471) (0.0566) (0.0520)

Adopter × t 0.0102** 0.0472*** 0.0381*** 0.0780***
(0.00430) (0.00314) (0.00462) (0.00341)

Firm FE No Yes No Yes
Observations 219232 169219 219232 168646

Notes: * p < 0.10, ** p < 0.05, *** p < 0.01. The values are estimated using Poisson pseudo-maximum
likelihood (PPML). Robust standard errors are reported in parentheses. Period t is defined such that 1980
is t = 0. All columns include year fixed effects.

The results in the table show that adopters tend to innovate more frequently over time,
consistent with the predictions of the model. Additionally, once firm-level fixed effects are
accounted for, as in columns (2) and (4), then ICT firms tend to innovate less frequently in
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early periods of the data, also consistent with the model. One reason that the firm-level fixed
effects may be important for highlighting this feature is that more innovative firms tend to
also be early adopters of ICT.

C.4 Competition Spillovers

The model predicts that competition δκ(t) faced by firms varies over the transition path. I
use the probability that a firm exits the sample to test competition spillovers. The model
makes two predictions about firm exit over the transition path: (i) ICT firms are less likely
than non-ICT firm to exit; and (ii) ICT firms become relatively more likely to exit over time.
Table 20 explores these trends empirically using the patent data. In the model, larger firms
are less likely to exit because they accumulate more product lines that shield them from
being pushed out of the market. To control for this, I include the firm’s discounted patent
stock, calculated as Pat Stockf,t = 0.9 ∗ Pat Stockf,t−1 +Nf,t where Nf,t is is the number of
patents applied for by firm f in period t.

Table 20: Exit Probability by Firm Type

Exit
(1) (2)

Adopter -0.135*** -0.204***
(0.00882) (0.0190)

Adopter × t 0.00527***
(0.00122)

Observations 140870 140870

Notes: * p < 0.10, ** p < 0.05, *** p < 0.01. The values are estimated using Poisson pseudo-maximum
likelihood (PPML). Robust standard errors are reported in parentheses. Both columns include year fixed
effects and a control for the firm’s discounted stock of patents. Period t is defined such that 1980 is t = 0.

The relationships in Table 20 are consistent with the model predictions. Adopters are
both relatively less likely to exit than other firms and become more likely to exit over the
transition period.
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D Quantitative Appendix

D.1 Algorithm to Calculate the Transition Path

Solving the transition path involves solving for the sequence of value functions {vκ(t), Bκ(t)}
and aggregate states {Dκ(t), q̄(t), µ(t)} for each period in the transition path t ∈ [0, t̄]. I
use a modified version of the algorithm from Acemoglu et al. (2016a). I solve the discrete
approximation to the transition path equilibrium for a small interval ∆t = 0.10 for 1,100
periods (110 years). I initialize the economy at the non-ICT BGP and introduce ICT in
period t = 0. Following its introduction, firms become aware of the properties of ICT as well
as the evolution of the economy over the transition period. I assume that ICT becomes fully
diffused by the final period, which roughly corresponds to the year 2080 in the data. I solve
the transition path using the following algorithm:

1. Guess a sequence of value functions {vκ(t), Bκ(t)} over the transition path. I take the
starting point to be BGP values for each technology in all periods.

2. Starting in period 0, solve the economy forward using the the guess of the value func-
tions. The innovation rates are solved using the discrete time approximations from the
Proof of Proposition A.3. The entry rate ze(t) solves the entry problem. Update the
states, (g(t),Dκ(t),Φ(µ, t)), using the discrete approximations for the laws of motions
from the main text and the innovation intensities.

3. Solve backwards over the transition path for the value functions using the discrete time
approximations from the Proof of Proposition A.3.

4. Repeat steps (2) and (3) until the value functions converge.

D.2 Sensitivity of Model Moments

Table 21 reports the change in model moments used in the joint calibration to a 10% shock to
the parameter value. For the case of the step sizes, the shock is calculated on the component
greater than one, e.g., λnonx

′ = 1 + 1.1× (λnonx − 1). This highlights the interconnectedness of
the calibration and how each model parameter relates to the moments targeted in the joint
calibration.

The table shows that while some moments are more closely related to some parameters,
as discussed in the baseline text, the determination of most moments depends on the joint
choice of parameters. For example, the mean squared error for ICT citations in the model
and data is closely related to the adoption cost function parameters {ψa, ζa}, as is expected.
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Table 21: Sensitivity of Model Moments to a 10% Change in Parameter Values

Avg Entry Rel Inn Rate Profit Adopt Growth ICT 1999 gnon MSE Prob ICT
ζa 5.0 98.6 1.3 -3.3 12.3 0.0 600.7 -13.1
ψnonx 9.4 16.1 -0.3 2.1 -1.0 -5.1 -17.2 2.9
ψictx 12.0 -34.0 0.0 2.1 -2.9 0.0 -34.9 -1.0
λnon 18.3 -19.9 5.4 -7.6 -3.9 14.6 -54.1 -1.9
ψe -50.2 31.3 0.7 1.8 7.5 0.0 234.2 -4.1
ηict 0.4 8.8 0.8 8.9 1.2 0.0 32.7 -0.9
ψa -1.2 -15.4 -0.2 0.3 -2.1 0.0 -39.5 2.3
αict -7.7 48.5 0.4 -2.0 5.2 0.0 125.6 5.7

Notes: The table reports the percent change in model moments from a 10% change in the indicated parameter,
except for MSE where the value is calculated as 100 times the change in the MSE.

However, this moment is also dependent on the entry cost ψe, which pins down the average
value of firms along the transition, and the cost of ICT exploration R&D since this is another
channel of diffusion.

D.3 Drivers of Adoption

In this appendix section, I examine the drivers of adoption R&D over the transition path.
Figure 10 reports the adoption intensity za(t) of non-ICT firms over the transition path as
well as the direct and indirect benefits from adoption, that are described in Proposition 1.
As discussed in the main text, the adoption intensity is relatively small compared to the
other R&D activities because of the relatively high cost of adoption ψa and low returns ηict.

The figure shows that adoption intensity declines over the transition period because of
a decline in the indirect benefits of adoption. The indirect benefits of adoption measures
the relative increase in firm value of producing a set of products with ICT, as opposed to
with non-ICT, holding the markups fixed. The indirect benefits depend on the extent of
knowledge and competition spillovers in the economy, which are reported in Figure 4. On
one hand, ICT firms face relatively lower competition spillovers in early periods when there
are relatively few ICT firms, since αnon = 0. On the other hand, ICT firms are relatively
less likely to innovate in early periods because of lower knowledge spillovers, since αict < 1.
Quantitatively, the first channel dominates leading to positive and declining indirect benefits
from adoption.
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Figure 10: Adoption Decomposition
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Notes: The figure reports adoption intensity za(t) and the direct and indirect benefits from adoption. Ex-
pressions are given in Proposition 1.

D.4 Sensitivity to Non-ICT Spillovers

The baseline model assumes that non-ICT firms only innovate on non-ICT goods. In this sec-
tion, I examine the sensitivity of the main results to setting αnon = 4.3%. Since ICT-related
patents are defined using citation links, the moment used to calibrate αict in the baseline
calibration is mechanically small. Instead, I construct the target for αnon using the proba-
bility that non Computers & Communications patents cite Computers & Communications
patents. I then approximate Dict using the share of ICT-related patents to directly infer the
value of αnon from the data. For tractability, I assume that non-ICT firms that innovate on
ICT products are able to build on both components of quality, such that a non-ICT firm f

that innovates on good j produced by ICT firm f ′ has quality qjf = λnon(ηictqjf ′ ).
I recalibrate the other model parameters to match the same moments as in the baseline

calibration. Table 22 summarizes the model and data moments.
Table 23 summarizes the calibrated parameters in the extended model. Both the relative

cost of ICT exploration R&D ψictx /ψ
non
x and cost of adoption R&D ψa decline relative to the

baseline calibration. The decline compensates for the increase in αnon creating a hinderance
to diffusion since it leads to some ICT products being converted to non-ICT products. A
consequence of the lower cost of ICT exploration R&D is that the long-run growth rate
increases relative to the predicted long-run growth rate in the baseline economy.

Figure 11 shows that the path for ICT diffusion and growth are similar to the baseline
experiment. The transition path growth rate is slightly higher than in the baseline calibra-
tion, which is explained by the relative decline in the costs ICT exploration and adoption
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Table 22: Calibration Moments with Non-ICT Spillovers

Description of Moment Data Model
Initial BGP Growth (%) 2.00 1.99
Entry Share (%) 17.9 17.7
Profit Margin (%) 12.2 12.4
Relative Innovation Rate 0.203 0.177
Post-Adoption Growth 3.7 3.7
ICT Patent Share in 1999 (%) 70.7 68.4
MSE ICT Patent Share 0 0.02
Prob ICT Cites Non-ICT (%) 28.9 30.4

Table 23: Calibrated Parameters with Non-ICT Spillovers

Parameter Value
Cost of Entry ψe 1.39
Cost of Non-ICT Exploration R&D ψnonx 2.80
Cost of ICT Exploration R&D ψictx 2.85
Non-ICT Step Size λnon 1.119
ICT Step Size λict 1.157
Level Cost of Adoption R&D ψa 10.16
Rel Quality of ICT Products ηict 1.055
Cross-technology Spillovers αict 0.261
Crv Adoption R&D ζa 1.66

R&D.36 Over time, the growth paths start to diverge as the transition path in the extended
model converges to a higher balanced growth path in the long-run. The takeaway is that
the assumption of αnon = 0 in the baseline calibration does not substantially change the
quantitative results.37

36The assumption that non-ICT firms build on both components of quality (i.e. qjf′ = λnon(ηictqjf
) rather

than qjf′ = λnonqjf
) artificially increases the growth rate over the transition periods, but this effect is small.

37The growth path incorporates a full recalibration of the model and should not be taken as a comparative
static on the cross-technology spillover αnon (or αict).
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Figure 11: Growth and Diffusion with Non-ICT Spillovers
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