
Trade and Diffusion of Embodied Technology:
An Empirical Analysis∗

Stephen Ayerst1, Faisal Ibrahim2, Gaelan MacKenzie3, and Swapnika
Rachapalli4

1International Monetary Fund
2University of Toronto

3Bank of Canada
4University of British Columbia

February 20, 2023

Abstract

We examine knowledge diffusion through embodied technology trade using global
patents and citation data. We use inter-sectoral citation and sales data to characterize
knowledge and production input-output (IO) tables for individual countries. Using these
IO tables we construct a measure of the knowledge-weighted and production-weighted
embodied technology imports from the US. We then develop an instrumental variable
strategy to identify the causal effect of embodied technology imports on innovation
and diffusion. Increases of embodied technology imports lead to increased innovation
(measured by forward citations) and knowledge diffusion (backward citations).

Keywords: Research Spillovers, Technology Diffusion, Trade, Patents, Innovation
JEL classification: O33, F14, O31, O19, F61

∗We thank our discussants, Anna Ignatenko and Simone Lenzu, and participants at many conferences and
seminars for helpful comments on this paper. We have also benefited from feedback from Murat Celik, Kevin
Lim, Peter Morrow, Diego Restuccia, and Daniel Trefler. The views expressed herein are those of the authors
and should not be attributed to the Bank of Canada or its Governing Council, nor the IMF, its Executive
Board, or its management.



1 Introduction

Innovation and R&D activity are concentrated in a relatively small number of advanced

economies. Recent work demonstrates the quantitative importance of international technology

diffusion for the gains from trade and aggregate growth (See, for example, Buera and Oberfield,

2020; Sampson, 2020; Cai et al., 2022). However, little direct empirical evidence exists on the

significance of specific channels through which ideas spread across borders. In this paper, we

examine the diffusion of technology across countries and sectors through technology embodied

in imports of goods from the US using evidence from global patents and citations data.

We focus on this channel for three reasons.1 First, new innovations often manifest themselves

as new products or enhancements to existing products and many of these new or enhanced

products are traded. These product flows potentially convey information about the innovations

embodied within them to the users of the products. Second, the foundational knowledge on

which new innovations are based originates from many distinct sectors; these sources vary

across sectors and need not be related to sectors’ sources of production inputs. Since countries’

patterns of trade depend in part on patterns of comparative advantage, their imports of

technology embodied in trade flows affect innovation in different sectors in those countries

in different ways. Incorporating variation in sectors’ sources of knowledge and production

inputs is necessary to assess the impacts of a given amount of technology embodied in a set of

trade flows on different sectors. Third, accounting for technology embodied in traded inputs

has important policy implications. The effects of trade policies go beyond the well-studied

impacts of tariffs on, for example, static intermediate and final goods prices, since they can

also affect the flow of information and technology across countries and sectors. Because new

innovations often build on existing knowledge, changes in technology flows due to changes in
1Other channels include technology licensing, foreign direct investment, knowledge transfers within

multinational firms, immigration, trade in services, and cross-border scientific or technical collaborations (see
Keller, 2004, 2010, 2021, for surveys of empirical evidence of different channels).
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trade policy can have effects on innovation activities not accounted for by the policy-induced

responses of innovation to import competition and market access.2

The first contribution of our paper is to estimate the extent to which trade is a channel

of international technology diffusion. We do this by investigating the effects of embodied

technology imports on innovation and diffusion outcomes. The channel underlies many

theoretical and quantitative models of international technology spillovers (e.g., Grossman

and Helpman, 1991; Alvarez et al., 2013; Buera and Oberfield, 2020). We start by developing

a conceptual framework to guide our empirical analysis. In the conceptual framework, firm

innovations depend on a combination of R&D investment, domestic knowledge spillovers,

and international spillovers from the technological frontier. International spillovers depend on

embodied technology imports—the import-weighted stock of frontier knowledge—and the

relevance of cross-sector knowledge to the innovating sector.

We use patents data as our primary measure of innovation in our analysis. Patents

document innovations that result in new products, new components of existing products, or

new methods of producing products. The second contribution of our paper is to construct a

novel dataset on country-sector level innovations and trade. We leverage the Google Patents

database to construct detailed patent outcomes for a wide range of countries. In particular, the

database allows us to construct measures of patenting based on the locations of innovators and

measures of cross-country citation flows. We also use import data from the Centre d’Études

Prospectives et d’Informations Internationales (CEPII) database of international trade flows

and cross-sector sales from the Bureau of Economic Analysis (BEA) in our analysis. Finally,

we map data into consistent sector definitions using a series of concordances.

The third contribution of our paper is to construct empirical measures of embodied
2Shu and Steinwender (2019) survey the empirical literature examining evidence of the effects of import

competition and market access on innovation. Existing work that, like us, focuses on effects that are present in
patents data includes Bloom et al. (2016), Bombardini et al. (2018), Autor et al. (2020) for import competition,
and Coelli et al. (2020) and Aghion et al. (2021b) for market access.
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technology imports. As a first step, we construct measures of the cross-sector relevance of

knowledge. We use cross-sector citations and sales data to construct knowledge and production

input-output (IO) tables as a measure of the relevance of cross-sector knowledge. Within a

country, we construct the knowledge IO table using the share of citations from each sectors’

patents to each other sectors’ patents. We similarly construct the production IO table using

the share of sales between sectors. Unlike with patents, data to construct the production IO

table is only available for the US, which we take as the frontier economy in our analysis. Since

knowledge and production IO linkages could, in principle, be similar for many sectors, we

demonstrate that the US knowledge and production IO tables are distinct.3 In particular, we

document that knowledge and production IO linkages are not highly correlated on average,

that knowledge IO linkages are less concentrated than production IO linkages for the average

sector, that the sectors that are key economy-wide sources of inputs differ between the

knowledge and production IO tables, and that the sources of knowledge inputs are more

persistent than the sources of production inputs. We also find that knowledge IO linkages

are less persistent on average in sectors in non-US countries than in the US.

Along with US imports, we use the IO tables to develop measures of embodied technology

imports. We develop two measures based on the knowledge and production IO tables that we

refer to as the knowledge-weighted and production-weighted embodied technology imports.

Specifically, we aggregate US import-weighted knowledge stocks using Cobb-Douglas weights

from the knowledge and production IO tables. We exclude the own-sector component in

the construction of embodied technology as imports and innovation activity in a country-

sector can be correlated due to domestic demand shocks or import competition effects. The

knowledge-weighted measure is directly related to our mechanism of interest since it relies

on knowledge flows across sectors. The production-weighted measure is also included as
3Though not the focus of our paper, we are among the first to provide a descriptive comparison of the

knowledge and production IO tables of an economy. Concurrent work in Hötte (2021) and Liu and Ma (2022)
construct similar knowledge and production IO tables and compare them.
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potentially important transfers of technology can occur through production interactions.

A key outcome of our analysis is then to measure the relative strength of spillovers from

embodied technology weighted by knowledge and production linkages.

Our main empirical specification involves regressing measures of innovation and diffusion

outcomes on knowledge-weighted and production-weighted embodied technology imports. The

main innovation outcomes are patents, forward citations, and forward citations per patent

while our main diffusion outcomes are US backward citations, US backward citations per

patent, and the US backward citation share.4 We also include controls for the US knowledge

stock, each country’s own knowledge stock—constructed using country-specific knowledge IO

linkages—and own-sector imports. Additionally, our long panel of data, spanning from 1995

through 2015, allows us to control for high-dimensional fixed effects. We include country-

sector fixed effects to account for differences in the propensity to patent and innovate across

countries and sectors, country-year fixed effects to account for changes in patenting markets

and development within countries over time, as well as aggregate sector-year fixed effects to

control for structural changes in sectoral technologies over time.

A potential concern with estimating the effects of the trade channel of technology diffusion

on domestic innovation is that domestic shocks to future potential profits or shocks to R&D

productivity can lead to R&D activity in a country-sector and the demand for production

and knowledge intermediate inputs being correlated. 5 To address this concern, we use an

instrumental variable (IV) strategy to isolate the effects of embodied technology imports

on innovation and diffusion outcomes. For each country, we construct a cluster of related

countries that fall into the same quintiles of total trade (exports plus imports) to GDP ratio

and GDP per capita. We then construct the instrument for each country as US exports to
4Forward citations are measured over a five-year period to reduce truncation issues. US backward citations

are measured as the total citations of US patents by all patents applied for in a given country-sector-year.
5Data on R&D spending at the level of industry disaggregation used in our analysis is unavailable for

most countries in our sample.
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all countries outside of the country’s cluster. The instrument isolates US supply shocks by

excluding countries that are likely to experience correlated demand shocks.6

Using our IV strategy, we find that a 1% increase in the knowledge-weighted embodied

technology imports increases patenting by around 0.67%. In comparison, a 1% increase in the

production-weighted embodied technology imports increases patenting by 0.003%. To quantify

the size of the of the estimated coefficients, we show that a one standard deviation increase of

the residualized of knowledge-weighted and production-weighted embodied technology imports

account for a 13.2% and 0.06% standard deviations of residualized patenting. The considerably

larger estimate of the knowledge-weighted measure is consistent with our expectation that

the knowledge IO table better approximates the relevance of knowledge across sectors.

For diffusion outcomes, we find that a 1% increase in embodied technology imports increases

US backward citations by a similar proportion for the knowledge-weighted measure and

0.005% for the production-weighted measure. Knowledge-weighted and production-weighted

embodied technology imports account for 8.8% and 0.04% of the standard deviation of

residualized US backward citations. Despite the elasticity for US backward citation being

larger than that for patenting, we do not find consistent evidence that either measure of

embodied technology imports increases the rate of US backward citations (US backward

citations per patent) or the share of US backward citations (out of total backward citations

in a country-sector-year). We expect that foreign backward citations are a noisier measures

than patenting outcomes and find that the rate of US backward citations becomes positive

and statistically significant in many of our robustness exercises.

Our estimated coefficients are robust to a variety of alternative specifications. We find

similar estimates for coefficients at different lags for regressors. We consider alternative

instruments constructed using a traditional leave-one-out approach and constructed using
6The commonly-used leave-one-out instrument can be viewed as a case of this strategy in which each

cluster includes only a single country. Our results are robust to using this instrument instead.
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all other countries within a cluster (as opposed to all countries outside of the cluster in our

baseline). We find economically more significant results when we restrict the sample to the 40

countries with the most patenting activity, consistent with the idea that patenting activity is

better measured in these countries or more representative of innovation activity. Finally, we

find similar results using alternative constructions of the main variables, alternative innovation

and diffusion outcomes, or other controls.

Related Literature. Our work contributes to the literature on the channels of international

technology diffusion (most recently surveyed by Keller, 2021), particularly papers that examine

the trade channel. This includes work pioneered by Coe and Helpman (1995) and the within-

sector analysis of R&D diffusion across borders through both trade and non-trade channels in

Acharya and Keller (2009). Our focus on direct evidence for diffusion using citations in new

patents is closely related to MacGarvie (2006) and concurrent work by Aghion et al. (2021a),

both of which use French firm-level data on the extensive margins of trade participation to

show that citations to firms’ patents increase in foreign markets with which firms interact

through trade. We add to this body of evidence by showing with a sector-level analysis that

embodied technology imports is a source of technology diffusion.

In doing so, our paper provides evidence for the international technology diffusion that

underlies recent growth models with trade, diffusion, and innovation (Buera and Oberfield,

2020; Sampson, 2020; Cai et al., 2022). Most closely related is Cai et al. (2022) who examine

inter-sectoral and cross-country technology diffusion. In their model, technology diffuses

exogenously within and across borders based on parameters estimated using citation linkages

from the US patent and trademark office. We show that this diffusion across countries depends

on endogenous trade flows between countries.

The empirical approach we take to evaluate the effects of diffusion of technology across

countries is complementary to recent work using patents data to measure international
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technology diffusion through inter-sectoral networks, including Fons-Rosen et al. (2019);

Berkes et al. (2022); Liu and Ma (2022).7 To the best of our knowledge, ours is the first

paper to include inter-sectoral knowledge IO measures based on these data to estimate the

trade channel of technology diffusion. Fons-Rosen et al. (2019) use patents-based sector-pair

measures of technological similarity adapted from Bloom et al. (2013), which are distinct

from our citations-based IO measures, to investigate the foreign direct investment channel

of technology diffusion. Berkes et al. (2022) show that there has been a large increase in

international knowledge spillovers since the 1990s as measured by cross-country patent

citations and that the innovations induced by this increase in diffusion lead to an increase in

the growth rates of sectoral output per worker and total factor productivity. Closely related

is the empirical exercise in Liu and Ma (2022) that documents that global spillovers from

past patenting activity that depend on the network of patent citations across countries and

sectors lead to increases in innovation.

Our paper is also related to the branch of the trade literature examining the effects of

changes in access to intermediate production inputs due to trade policy on many dimensions

of firm performance. This line of research includes work that shows that increased openness

to trade of production inputs leads to increases in productivity (Amiti and Konings, 2007;

Topalova and Khandelwal, 2011), product scope and new product introduction Goldberg

et al. (2010), and reductions in marginal costs (De Loecker et al., 2016).8 Though our analysis

is conducted at the sector level rather than the firm level, our results speak directly to the

mechanisms through which trade in inputs leads to improvements in performance and suggest

that technology diffusion and increases in the generation of new patented technology follow

from increases in technology embodied imports.
7We also build on work examining the inter-sectoral patterns of knowledge flows in single-country settings,

such as Acemoglu et al. (2016) and Cai and Li (2019).
8See also the other relevant works surveyed in Shu and Steinwender (2019).
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Outline. The remainder of this paper proceeds as follows. Section 2 describes the data

used in our analysis. Section 3 presents the conceptual framework used to guide our empirical

analysis. Section 4 describes the constructions of the knowledge and production IO tables.

Section 5 describes our empirical strategy and baseline specifications. Section 6 discusses the

estimation results and robustness checks. Section 7 concludes.

2 Data

In this section, we provide an overview of the data used for the main analysis. We use data

on patent applications and citations, inter-sectoral purchases of inputs by US sectors, and

bilateral product-level trade flows from the US into other countries. These data come from a

variety of sources and are provided in a range of distinct classifications that compel us to use

concordance tables to translate all the data into a consistent classification system. We briefly

describe the data and concordances we use below and leave the remaining details of the data

collection and variable construction to Appendix B.

Patents and citations data. We draw on data collected by Google Patents from a wide

range of patent offices around the world. For each distinct patent family, which comprises the

set of patent applications for a given innovation filed at one or more patent offices, we identify

the earliest date a patent was applied for at any patent office and treat this as the filing date

for the patent family. Each application in a patent family contains the following information

that we use in our analysis: the technology categories to which the innovation is relevant,

which are represented by International Patent Classification (IPC) codes; the set of inventors

of the patent application and their countries of residence; and citations to other patents

listed in the patent application.9 Throughout our analysis, we focus on patent applications
9We focus our analysis on those patent families with non-missing data for each of these three sets of

information. Appendix B explains how we select information on these attributes from among the patent
applications in a family.
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rather than patent grants as grant dates are unavailable in the Google Patents database for

patents applied for at many national patent offices, whereas application dates are available.10

Furthermore, as we examine technology diffusion and its effects, patent application events

better reflect the timing of diffusion than do patent grant events.

We calculate the number of initial applications of patent families filed in each year between

1995 and 2015 in each country and technology subclass (a 4-character IPC code) and refer

to these as patent counts.11 Patents are assigned to countries using fractional counts by

computing the share of inventors of each patent from each country.12 For a subset of patent

families, applications are submitted to the three patent offices that throughout our sample

period are of global significance, including the European Patent Office (EPO), the Japan

Patent Office (JPO), and the United States Patent and Trademark Office (USPTO). We

count the number of such triadic patent applications.13

In addition to counts of patent families, we use information on citations between patents.

To measure the quality of patents filed in each year and each country and technology subclass,

we compute the number of citations received by these patents across citing patents applied

for each year from 1995 to 2021 in all countries and technology classes and define these as

the forward citations of the patents in each year. Backward citations data are used for two

purposes. First, as described in Section 4.1, we use backward citations to measure knowledge

linkages between sectors. Second, for patents filed each year and in each non-US country and

technology subclass, we calculate the number of backward citations to US patents, domestic

patents, and other foreign patents filed in any technology subclass in each year.
10For instance, there are no grant dates available for patents filed at the Israel Patent Office.
11For families with multiple IPC codes, we count these patents once for each technology subclass.
12Using information on the countries of the inventors rather than the patent office of the initial application

of a patent family allows us to account for innovations developed in one country for which patent protection
is first sought in another country. The sample used in our baseline analysis includes data from 82 countries.

13We also include patents applied for at the JPO, the USPTO, and at the patent offices of France, Germany,
and the United Kingdom. These definitions of a triadic patent family are consistent with the methodology
described by Dernis (2003).
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Inter-sectoral input purchases. To measure production input-output relationships, we

employ the Bureau of Economic Analysis (BEA) Supplementary Use Tables. These tables

are available at five-year intervals and provide the value of purchases by input sector made

by US output sectors based on the most up-to-date US industrial classification in use at

the time. We use tables that span from 1992 to 2007. Sector classifications are based on US

Standard Industrial Classification (SIC) codes for the 1992 Use table, while in more recent

vintages they are based on the North American Industry Classification System (NAICS). We

describe how we convert the data based on the various SIC and NAICS classifications into a

consistent classification in Appendix B. The BEA Use tables not only cover a long period

of time, they are available at a high level of disaggregation compared to alternative sources

of inter-sectoral sales data. Moreover, using US data enables us to examine how sectors in

importing countries are affected by the technology embodied in imports of production inputs

from the US based on the patterns of how those inputs are used in the US.

Bilateral trade data. Import data from CEPII’s Base pour L’Analyse du Commerce

International (BACI) database provide the value of imports of different goods from the

US into each country. Our analysis uses annual data from 1995 to 2015. Import values are

denominated in current US dollars that we convert to constant 2010 US dollars using CPI

deflators taken from the OECD. Goods are classified using 1992 Harmonized System (HS)

codes at the 6-digit level of disaggregation.

Concordances between classifications. Because the raw data underlying our analysis are

categorized using different classification systems, we employ multiple concordances between

these classifications to provide a coherent framework for analysis. We choose the most

disaggregated sectors in the 2002 BEA data as our endpoint classification system. This

classification, in which sectors are defined similarly to those in the 2002 US 6-digit NAICS

classification, allows us to retain a high degree of disaggregation in our analysis while avoiding
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the potential problems that would arise in a crosswalk of our inter-sectoral input purchase

data from the BEA sectors into the more numerous HS goods categories.14

We implement a concordance methodology that enables us to first construct measures

of technology embodied in goods at the same level of disaggregation as the imports data

and second to measure the flow of technology embodied in goods imported from different US

sectors. The data downloaded from the Google Patents database are classified into different

IPC version 8 4-character technology subclasses.

For the first stage, we convert the data on patent counts, forward citations, stocks of

knowledge (the measurement of which we describe in Section 5.2), and backward citations

between technology subclasses into categories of goods.15 To do this, we use the concordance

developed by Lybbert and Zolas (2014) between technology subclasses and 2002 6-digit HS

codes and then crosswalk this data to 1992 6-digit HS codes. This first concordance is based

on an algorithm that uses keywords extracted from the 1992 HS code descriptions that are

matched with the text of patent titles and abstracts to construct probabilistic links between

the IPC technology subclasses of the matched patents and the HS goods categories.16

In the second stage, a series of crosswalks between 1992 HS codes and our endpoint 2002

BEA classification that provide us with weights used to map goods into sectors is overlaid

on the knowledge stocks, patents, citations, and trade data. The crosswalks used are the

following: first from 1992 6-digit HS codes to 1987 4-digit Standard Industrial Classification

(SIC) codes, second from 1987 4-digit SIC codes to 2002 6-digit NAICS codes, and third
14There are no publicly available sources of data on input-output relationships across goods categorized by

disaggregated HS codes. The analysis sample used in our baseline specifications includes 292 sectors.
15See Appendix B for the procedure we use to calculate citations between technology categories.
16Related papers that use the concordances introduced by Lybbert and Zolas (2014) and extended to

other classifications in Goldschlag et al. (2020) include Kukharskyy (2020) and Hötte (2021), among others.
Kukharskyy (2020) uses the concordances with citations data to construct cross-sector knowledge linkages,
but applies these linkages to investigating how the applicability of multinational parent firms’ knowledge
capital for a foreign affiliate affects the ownership stake (the degree of integration) of the parent firm in its
affiliate. Hötte (2021) also constructs cross-sector knowledge linkages and combines them with production
linkages to explore how different network characteristics of the knowledge and production IO tables are
associated with the level and growth of US sector-level output and patenting.
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from these NAICS codes into the 2002 BEA classification. In applying the first two of these

crosswalks, mappings from 1992 HS codes to 2002 NAICS codes use weights derived from

the earliest available breakdown of employment by 2002 6-digit NAICS sector from County

Business Patterns (CBP) data.17 Similar procedures that leverage CBP-based employment

weights are used to crosswalk the data underlying the different vintages of the BEA Use

tables into the 2002 BEA sector categories.

3 Conceptual Framework

Before turning to our empirical analysis, we describe a stylized conceptual framework to

guide our analysis. Time is discrete and indexed by t. The economy is populated by a unit

mass of identical firms in each sector of each country. Because firms are identical, we refer to

them by their country-sector-year (i, h, t) to simplify notation. To be consistent with our data

structure and the empirical approach described in Section 5, we define three levels of sectoral

aggregation, where we denote n as a summary sector (the highest aggregation), h as a sector

(the focus of our analysis), and p as a subsector (or product). We also define the sets Ph as

the set of subsectors p in sector h and n(h) as the summary sector n that contains sector h.18

Firms in each country produce innovations by investing in R&D, denoted by Rh
i,t, to

earn future profits πh
i,t+1 per innovation in the following period.19 Expected profits in period

t+ 1 can be written as Et[πh
i,t+1] = π̄i,t × π̄

n(h)
t × π̄h

i × euh
i,t where uh

i,t is an independent and

identically distributed random variable that is known to firms in period t. We use a broader

sector aggregation for profits in π̄n(h)
t to be consistent with our empirical specification. A firm

17The details of this procedure and links to the sources of all concordances used in this paper are provided
in Appendix B.

18Ph can be thought of as the set of products that are associated with a sector h. Our raw trade data is
collected at the product level and we first convert our patent data to this level of aggregation. We introduce
the summary sector n(h) since we use fixed effects at this level of aggregation in our empirical application.
These details are further explained in Section 5.

19We simplify the environment by assuming that firms only earn profits in the next period, but the model
would be equivalent if firms earned a stream of profits proportional to expected profits.
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(i, h, t) that invests Rh
i,t into R&D produces innovations in the next period at rate

Xh
i,t+1 =

(
Rh

i,t

ψh
i,t

) 1
ζ

(Zh
i,tS

h
i,t)

1− 1
ζ

where ψh
i,t governs the relative cost of R&D across country-sector-years, Zh

i,t is the domestic

stock of relevant knowledge for sector h, and Sh
i,t is a spillover from the frontier of knowledge

(described below). The R&D cost parameter is equal to ψh
i,t = ψi,t × ψ

n(h)
t × ψh

i × evh
i,t , where

vh
i,t is an independent and identically distributed random variable that, like uh

i,t, is known to

firms in period t. Alternatively, the variable Xh
i,t could be interpreted as the average quality

of innovations or the quality-adjusted rate of innovations.

Domestic knowledge Zh
i,t depends on the stocks of knowledge in different sectors of the

domestic economy and the relevance of those stocks of knowledge as inputs into innovation

for the innovating sector h. Domestic knowledge is given by

Zh
i,t =

∏
l

GZ

(∑
p∈Pl

Kp
i,t

)κl,h
i,t

where GZ(·) is a monotonic function that dictates the strength of spillovers from domestic

knowledge in an input sector, which we set to GZ(x) = (1 + x)ηZ .20 The other variables are

the knowledge stock Kp
i,t of country-subsector-year (i, p, t) and the relevance of knowledge

from sector l for producing innovations in country-sector-year (i, h, t), denoted by κl,h
i,t .

Spillovers from the frontier economy depend on the stocks of knowledge embodied in

traded goods coming from the frontier economy. The sectoral flow of knowledge coming into

sector h from other sectors l depends on a Cobb-Douglas aggregator given by

Sh
i,t =

∏
l

GS

(∑
p∈Pl

(mp
F,i,t ×Kp

F,t)
)γl,h

F,t

20This specification of GZ(x) is consistent with our treatment of zeros in the empirical analysis.
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where GS(·) is a monotonic function that dictates the strength of spillovers from the embodied

frontier technology, which we set to GS(x) = (1+x)ηS . The value of γl,h
F,t captures the usefulness

of knowledge from sector l to sector h in the frontier economy in period t. We allow for

this parameter to change over time to capture dynamics in knowledge linkages over time.

We also assume that the relevance of frontier knowledge in sector l for innovating in sector

h is determined in the frontier economy, whereas the relevance of domestic knowledge for

innovating is specific to the domestic economy. This could be thought of as reflecting how

different types of goods result in knowledge spillovers to different countries.

The spillover of ideas from the frontier economy depend on two components: Kp
F,t is the

frontier stock of knowledge in subsector p and mp
F,i,t = Mp

F,i,t/Y
h(p)

i,t is the imports from the

frontier economy to the domestic economy Mp
F,i,t divided by the subsector output Y h

i,t. Unlike

with domestic knowledge, we scale frontier knowledge by the relative abundance of frontier

goods in the domestic economy, as measured by mp
F,i,t. Intuitively, embodied technology can

be thought of as capturing the probability that a domestic innovator encounters a frontier

good by chance multiplied by the probability that the innovator realizes a new innovation

given the encounter (as in, for example, Bloom et al., 2013; Lucas Jr. and Moll, 2014; Perla

and Tonetti, 2014; Buera and Oberfield, 2020). Whenever γl,h
F,t > 0 and ηS > 0, increased

domestic abundance of frontier goods in subsectors p ∈ P l (higher mp
F,i,t) and increased

technology embodied in those goods (higher Kp
F,t) both increase innovation in sector h.

The problem of a firm is to maximize net expected profits by choosing R&D expenditure.

Equivalently, the firm’s problem can be written as choosing the innovation rate

Xh
i,t+1 = arg max

X
Xπh

i,t+1 − ψh
i,tX

ζ(Zh
i,tS

h
i,t)1−ζ

where the second term is the R&D cost paid by the firm for a given innovation rate. Solving
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the problem implies that firms innovate at rate

Xh
i,t+1 = ζ̃Sh

i,t × Zh
i,t ×

 π̄i,t

ψi,t

× π̄
n(h)
t

ψ
n(h)
t

× π̄h
i

ψh
i

× euh
i,t−vh

i,t

 1
ζ−1

(1)

where ζ̃ = ζ−1/(ζ−1). Taking the log of (1) and grouping variables implies

lnXh
i,t+1 = lnSh

i,t + lnZh
i,t + fi,t + f

n(h)
t + fh

i + ϵh
i,t

where fi,t = (ln π̄i,t − lnψi,t)/(ζ−1), fn(h)
t = (ln π̄n(h)

t − lnψn(h)
t )/(ζ−1), fh

i = (ln π̄h
i − lnψh

i )/

(ζ − 1), and ϵh
i,t = (uh

i,t − vh
i,t)/(ζ − 1). Substituting our functional forms for the domestic and

frontier spillovers, GS and GZ , we get:

lnXh
i,t+1 = ηS lnEmbTechh

i,t + ηZ lnOwnTechh
i,t + fi,t + f

n(h)
t + fh

i + ϵh
i,t, (2)

where

EmbTechh
i,t =

∏
l

(
1 +

∑
p∈Pl

(mp
F,i,t ×Kp

F,t)
)γl,h

F,t

OwnTechh
i,t =

∏
l

(
1 +

∑
p∈Pl

Kp
i,t

)κl,h
i,t

The expression in (2) provides the foundation for our empirical strategy. The parameters,

ηS and ηZ , are the elasticities of the spillover functions GS and GZ respectively. The rest of

the paper focuses on identifying these elasticity parameters which modulate the impact of

frontier and domestic knowledge spillovers on innovation outcomes of a country. In the next

sections, we construct variables that correspond to the values of EmbTech and OwnTech,

which stand for “embodied technology imports” and “own-country technology” respectively.

The conceptual framework highlights the relationship between embodied technology imports
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and innovation outcomes. The assumptions on the nature of expected profits and investment

costs are relatively flexible and capture many macroeconomic differences across countries and

sectors that may otherwise be of concern in estimating the relationship. This would include,

for example, country-specific business cycles, sector-specific trends, such as digitalization,

and time-invariant differences in the comparative advantage of countries across different

sectors. However, difficulties may arise if there are persistent country-sector-specific shocks

that drive both an increase in imports and innovation. To deal with these issues, we separate

the own-sector and cross-sector effects, since we expect these issues to be most severe within

sectors, and we develop an IV strategy. These remedies are discussed in detail in Section 5.

4 Inter-Sectoral Technology Linkages

We use the conceptual framework as a roadmap for the empirical analysis. We start by

developing measures of the inter-sectoral relevance of technology inputs. For κl,h
i,t , which

parameterizes domestic knowledge spillovers in country-sector-year (i, h, t) from sector l, we

base this on patent citation relationships between those sectors. Spillovers from technology

embodied in imports from the frontier may depend on both the inter-sectoral knowledge

flows captured by these citations as well as patterns of inter-sectoral input purchases, which

we measure using production relationships between sectors, so we allow γl,h
F,t to depend on

both types of relationships. We also use this section to highlight key differences between the

knowledge and production IO tables that are constructed using these relationships to shed

light on how we separately identify the effects of imported embodied technology that operate

through these two channels.
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4.1 Knowledge and Production Input-Output Tables

Our analysis estimates the effects of embodied technology imports on patenting outcomes. We

focus on two candidates to describe the relevance of knowledge in each sector for generating

innovations in other sectors. The first is knowledge input-output linkages, which describe

the relative flow of patent citations across sectors. This measure is tightly linked with our

focus on innovation outcomes since patent citations represent a direct report of flows of

technology. The second is production input-output linkages, which describe the relative flow

of intermediate inputs across sectors. While less directly linked to innovation outcomes, the

use of intermediate inputs captures another channel through which technology can diffuse

within and between sectors. We collect these measures of technology relevance into separate

knowledge and production IO tables and document patterns of inter-sectoral technology flows.

We denote the number of citations of country-sector-year (j, l, s) patents by country-sector-

year (i, h, t) patents as Citesl,h
j,i,s,t. This variable captures the reported flow of knowledge from

(j, l, s) to (i, h, t).21 The set of sectors is denoted by H and the set of countries by I.

Knowledge IO linkages, which measure the relevance of knowledge produced in each input

(cited) sector for each output (citing) sector, are constructed using the backward citations

made by patents. More specifically, let κl,h
i,t denote the knowledge IO linkage between sectors

l and h in country i in year t. We allow for this relationship to change over time and base

the relationship in year t on patents filed between years t− τ̄ and t for some chosen lag τ̄ .

The knowledge IO linkage is given by

κl,h
i,t =

∑
j∈I

∑τ̄
τ=0

∑t−τ
s=0 Cites

l,h
j,i,s,t−τ∑

k∈H
∑

j∈I
∑τ̄

τ=0
∑t−τ

s=0 Cites
k,h
j,i,s,t−τ

. (3)

In our analysis, we set the maximum lag used in the construction of the knowledge IO
21Similarly to the allocation of patents to countries, we weight each citation by the product of the cited

and citing patents’ fractional country weights based on their respective inventor country compositions. In
this notation, each year refers to the filing year of the relevant patents.
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linkages to a ten-year window (τ̄ = 9) to allow for slow moving technological transitions.22

The knowledge IO linkages capture the country-sector (i, h) citations made by patents filed

over a ten-year window to all prior sector l patents from all countries as a share of total

citations made by country-sector (i, h) patents filed over the ten-year window.

Similarly, we measure production IO linkages as the importance of goods produced in each

input sector for each output sector. Because the availability of highly disaggregated data on

inter-sectoral sales is comparatively limited, we focus on within-country transactions in the

US. We define ρl,h
i,t , the analog to κl,h

i,t for the production IO table, as

ρl,h
i,t =

Salesl,h
j,i,t∑

k∈H Salesk,h
i,t

, (4)

where Salesl,h
i,t is the total value of sector l goods sold to country-sector-year (i, h, t). Production

IO linkages measure, for year t, the sales from sector l to sector h as a share of the total sales

from all sectors to sector h.

The linkages are based on US data from the BEA Use tables as described in Section 2.

Since the BEA Use tables are only available at five-year intervals, we use the production IO

linkages constructed from the data in each table for multiple years. For consistency with the

measurement of production IO linkages, we also use only knowledge IO linkages from the

same years for which there is a BEA Use table. In addition, to allow sectoral variation in

exposure to technology inputs to be determined in advance of exposure in a given year, we

use IO linkages that are lagged relative to the years in which exposure is measured. This lag

in exposure variation is applied to both knowledge and production IO linkages.23

22For example, Berkes et al. (2022) and Ayerst (2022) find that ICT sectors have become more important
sources of innovations over the period of our analysis, highlighting the need for dynamic IO linkages. Baslandze
(2018) finds an overall increase in the interconnectedness of sectors over this period.

23To be more precise, we use κl,h
i,1992 and ρl,h

i,1992 for exposure measured between 1995 and 2000, κl,h
i,1997 and

ρl,h
i,1997 when we examine exposure between 2001 and 2005, κl,h

i,2002 and ρl,h
i,2002 for years between 2006 and

2010, and κl,h
i,2007 and ρl,h

i,2007 between 2011 and 2015.
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4.2 Description of Knowledge and Production IO Tables

The construction of the knowledge and production IO tables relies on different data. However,

there is little point in examining the effects of embodied technology in knowledge and

production inputs separately if the two IO tables are closely related to one another. We now

turn to illustrating several stylized observations regarding the two IO tables to demonstrate

that they reflect distinct measures of the inter-sectoral relevance of technology inputs.

Both knowledge and production IO linkages take on values between zero and one. Values

closer to one indicate stronger relationships whereas values further closer to zero indicate

weaker relationships. In Figure 1, we depict the knowledge and production IO tables for

the US economy in 2002, with values of κl,h
US,2002 represented in the left panel and ρl,h

US,2002 in

the right panel. In each table, rows correspond to input sector l and columns correspond to

output sector h. The color of each cell depends on the size of the IO linkage between the

input and output sectors. We plot only those IO linkages for which the input sector accounts

for at least 1% of the inputs used by the output sector. We also sort sectors in the IO tables

based on their relative importance as a source of production inputs across output sectors to

visually highlight the differences in the IO tables.

An immediate insight from Figure 1 is that there are clear differences in the patterns

of knowledge and production IO linkages for many sectors. We formalize and build on this

visual intuition through five descriptive observations that highlight the differences between

the knowledge and production IO tables.24

Observation 1: The sources of knowledge and production inputs are not highly correlated

for the average sector in the US.
24One can also clearly see that own-sector IO linkages along the diagonal are, in general, large relative

to off-diagonal IO linkages in both the knowledge and production IO tables. We discuss the importance
of own-sector versus cross-sector (off-diagonal) linkages both for the presentation of these observations in
Appendix A and for our empirical results in Section 6.
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Figure 1: Input-Output Tables
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Notes: Figure displays the knowledge and production IO tables where each point represents an IO linkage. The row position
of each output sector and column position of each input sector are held constant across both IO tables to facilitate visual
comparisons across tables. Sectors are sorted based on their economy-wide importance as suppliers of production inputs by
summing up the production IO linkages of each input sector over off-diagonal output sectors. The plots include the 292 2002
BEA sectors in agriculture, forestry, fishing and hunting, manufacturing, and mining with a non-zero sum of knowledge IO
linkages across input sectors. Knowledge (production) IO linkages are defined in Equation (3) (Equation (4)). Knowledge IO
linkages are based on backward citations of patents assigned to the US filed between 1993–2002 while production IO linkages are
based on the 2002 BEA Use table. Both plots only display IO linkages that account for at least 1% of the inputs used by an
output sector while all other IO linkages are visually suppressed.

Observation 2: The sources of production inputs are more highly concentrated than the

sources of knowledge inputs for the average sector in the US.

Observation 3: The key input-supplying sectors are distinct in the US knowledge and

production IO tables.

Observation 4: For the average sector in the US, the sources of knowledge inputs are

more highly correlated across time than the sources of production inputs.

Observation 5: The sources of knowledge inputs are less persistent on average in non-US

country-sectors than in US sectors. In part, this reflects a convergence on average between

each non-US country-sector and the same sector in the US.
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We relegate the elaboration of these observations to Appendix A as a comparison of

the IO tables is tangential to our main objectives. That said, a key implication of the

observations is that the knowledge and production IO structures of the economy capture

different relationships between sectors and, consequently, may capture different potential

sources of technology spillovers. Furthermore, although US knowledge IO linkages tend to be

highly persistent, there is a considerable degree of variation over time in US production IO

linkages (as well as in non-US knowledge IO linkages). In our baseline analysis we explore the

diffusion of knowledge through imports of embodied technology weighted using both dynamic

knowledge IO linkages and production IO linkages.

The approach used to measure knowledge IO linkages in this paper shares many similarities

with the method developed concurrently in Liu and Ma (2022). Like them, we construct

knowledge IO tables for many countries across a long period of time using data from Google

Patents and provide a descriptive analysis of the IO tables. Although both papers use different

sources of data to construct production IO tables, both document a low correlation between

the knowledge and production IO tables across all IO linkages in the tables. The analysis

in this paper goes one step further to show that this low correlation prevails across most

output sectors and at different points in time.25 Although Liu and Ma (2022) describe

their global knowledge IO table as being stable across time and across countries, our more

disaggregated analysis reveals that there are many non-US country-sectors for which the

sources of knowledge inputs change substantially across our sample period. Similarly, while

Liu and Ma (2022) find that the knowledge IO tables in most top patenting countries are

highly correlated with the US knowledge IO table when using patents from all years, our

analysis suggests that there is considerable variation across country-sectors and across time

in the correlation of US and non-US knowledge IO linkages.
25Although the comparable regression-based analysis in both papers is undertaken at the level of output

sectors and not countries, Liu and Ma (2022) do not document patterns of variation across output-sectors
and across time in the knowledge IO tables other than for domestic citation shares.
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5 Empirical Specification

We now describe the main empirical specification of our analysis and the construction of key

variables. Following Our main regressions involve regressing innovation outcomes on measures

of embodied technology imports. We start by specifying our outcome variables. We then use

the knowledge and production IO tables to develop the explanatory variables. Finally, we

outline the empirical analog of Equation (2) and an instrumental variable (IV) approach that

we use to identify the effects of spillovers from embodied technology imports.

The US as the technological frontier. Throughout the analysis, we focus on the effects

of imports from the US, which we consider to be the technology frontier. We make this

assumption for two main reasons. First, the US is both the most innovative country and the

largest originator of cross-country citations over this time period (see Berkes et al., 2022,

for evidence), which reflects the characteristics of the frontier economy. Second, setting the

frontier economy to the US allows us to be consistent with our data measurement, since

the US has detailed data available for multiple years to construct both the production and

knowledge IO tables described in Section 4, which are necessary for our analysis.

Sample Description. The unit of observation in our analysis is a country-sector-year. We

limit our final panel of data to the years 1995 to 2015. Years prior to 1995 lack trade data for

many countries and including later years would cause truncation issues for patents and forward

citations, which are the main data used for our innovation outcome variables. We also limit

the set of countries in our final sample based on their population, triadic patenting activity,

and export-to-GDP and import-to-GDP ratios. We do this to avoid including countries where

patenting outcomes may be too noisy, or countries that act as intermediaries in the global

trade network. Appendix B provides the details of our sample selection procedure.
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5.1 Outcome Variables

Table 1 summarizes, defines, and describes the main outcomes variables. The conceptual

framework illustrates the relationship between frontier knowledge spillovers and innovation

outcomes. The focus is on the rate of innovation as the main outcome variable, which we

measure in the data using both the rate of patenting (P atents) and the citation-weighted

rate of patenting (F wdCites). We also look at the average quality of patents, measured by

the number of forward citations per patent (F wdRate), to examine both the intensive and

extensive margin effects of frontier knowledge spillovers.

Table 1: Description of Outcome Variables

Variable Description

Patentsh
i,t The count of patent applications using the allocation

rules described in Section 2.
FwdCitesh

i,t =
∑

l∈H
∑

j∈I
∑t+5

s=t Citesh,l
i,j,t,s Measures total citation-weighted patenting activity. The

measure only includes citations received in the five years
following the calendar year of the patent’s application
to mitigate truncation issues that would arise in later
periods of the sample if citations received in all years
were used.

FwdRateh
i,t = F wdCitesh

i,t

P atentsh
i,t

Measures the average quality of patent applications as
the citations received by patents divided by total patents.

USBackCitesh
i,t =

∑
l ̸=h

∑t
s=0 Citesl,h

US,i,s,t The number of cross-sector citations to US patents. This
measure excludes own-sector backward citations to be
consistent with the focus on cross-sector imports of em-
bodied technology (discussed below).

USBackRateh
i,t = USBackCitesh

i,t

P atentsh
i,t

Measures the rate at which patents cite cross-sector US
patents. In this regard, the measure captures the intensive
margin of technology diffusion.

USBackShareh
i,t = USBackCitesh

i,t∑
l ̸=h

∑
j ̸=i

∑t

s=0
Citesl,h

i,j,s,t

The share of cross-sector citations to US patents in total
cross-sector citations to foreign patents. The measure is
informative of the extent to which knowledge inputs are
substituted towards US knowledge in response to larger
embodied technology flows from the US.

Notes: Variables are defined for a country-sector-year (i, h, t). For F wdRate, USBackRate, and USBackShare, we exclude
(i, h, t) observations with zero value in the denominator.

We also examine evidence on the extent to which trade of embodied technology is a source

of technology diffusion and leads to higher flows of knowledge from the US. Specifically, we use

23



the backward citation information underlying the knowledge IO table as a measure of cross-

country knowledge flows. We construct three outcome variables measuring total backward

citations to US patents (USBackCites), the per-patent rate of backward citations to US

patents (USBackRate), and the share of backward citations to US patents in the total

backward citations to foreign patents (USBackShare).

In our baseline specification, we measure outcome variables using the average of the

variables in the three-year window between year t and t + 2. Panel A of Table 2 presents

summary statistics of the main outcome variables. FwdRate and USBackRate are calculated

only for observations with non-zero patent counts, while USBackShare is calculated only for

observations with non-zero cross-sector citations to foreign patents. The summary statistics

show that the distribution of Patents and FwdCites are highly skewed with the median

country-sector-year having values close to zero. The distribution of outcomes based on

backward citations are similarly skewed.

5.2 Embodied Technology Imports and Other Controls

Our main variable of interest is the frontier knowledge spillovers through embodied technology

imports (EmbTechh
i,t in the conceptual framework). Before turning to our main variables

of interest, we discuss the construction of knowledge stocks Kp
i,t, which are used in the

construction of the main variables.

We measure the technological content of a subsector’s goods using patents data as

Kp
i,t = (1 − δ)Kp

i,t−1 + FwdCitesp
i,t,

where FwdCitesp
i,t is the five-year forward citations in country-subsector-year (i, p, t) and δ

is the depreciation rate of knowledge that we set to 5% to be consistent with commonly used

values. For each country and subsector, we initialize the stock of knowledge in 1940 with
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the value Kp
i,1940 = FwdCitesp

i,1940/δ. The initial value has little influence on the knowledge

stocks used in the period of our analysis because of the long time period.

Embodied technology imports. We set the linkages γ in the conceptual framework to

be a combination of knowledge κ and production ρ IO linkages, γl,h
F,t = ακl,h

F,t + (1 −α)ρl,h
F,t. We

do not impose structure on whether knowledge flows between sectors are better captured by

the knowledge or production IO linkages. For each country-sector-year (i, h, t), our measure

of knowledge-weighted embodied technology imports is given by

EmbTechKh
i,t =

∏
l ̸=h

(
1 +

∑
p∈Pl

(wl(p)Kp
US,tM

p
US,i,t)

)κl,h
US,t

, (5)

and production-weighted embodied technology imports is given by

EmbTechP h
i,t =

∏
l ̸=h

(
1 +

∑
p∈Pl

(wl(p)Kp
US,tM

p
US,i,t)

)ρl,h
US,t

. (6)

The amount of imported embodied technology depends on the flow of knowledge into country

i from every sector l in the United States. This flow is increasing in the volume of imports

and the stock of knowledge in sector l. Countries that spend more on sector l goods from

the United States have a higher flow of knowledge into them from that sector. For example,

a larger volume of imports could reflect more varieties of a sector’s goods being imported.

Our measure reflects the idea that as a country imports more, ideas upon which domestic

innovators can build become more abundant and readily available. The effect of a flow of

knowledge from a given sector l is weighted by the tendency of that sector’s knowledge to be

used in sector h in the US.

An important distinction from the conceptual framework is that we construct the measures

of embodied technology from the levels of US imports (Mp
US,i,t), rather than trade scaled by

output (mp
US,i,t = Mp

US,i,t/Y
p

i,t), since output data is unavailable at the level of aggregation we
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examine. A potential issue with this construction is that higher imports could simply reflect

that the importing country has a larger population or economy.26 We include granular fixed

effects as a best attempt to deal with this issue.27

We omit the own-sector component in the embodied technology spillover terms as within-

sector imports and innovation outcomes can potentially be related to each other for multiple

reasons. Within-sector demand shocks can lead to countries importing more foreign products

to satiate demand while at the same time investing more in innovation activities in the sector

due to increased returns. Moreover, own-sector imports can also affect innovation outcomes

in a country through import competition effects, since firms may invest more in innovation

in order to escape foreign competition. Finally, R&D productivity shocks and profitability

shocks to a country-sector can lead to imports and innovations by the country-sector to

be correlated. Given these concerns, we include a control for the own-sector component of

embodied technology spillovers constructed as

EmbTechDiagh
i,t = 1 +

∑
p∈Ph

wh(p)Kp
US,tM

p
US,i,t. (7)

We do not scale the knowledge inputs by the IO weights, κl,l
US,t or ρl,l

US,t, since we expect that

this variable also captures factors not directly related to the effects of technology diffusion,

such as import competition.28

26It is also worth noting that this is not an issue with the US technology stocks Kp
US,t since they are

common to all importers and capture the abundance of technology embodied within imports, meaning their
levels are important for the interpretation of our results.

27An alternative would be to use US import shares, i.e., US imports to country i over all imports to country
i. This construction leads to misleading conclusions because trends in trade—e.g., trade increases for most
country sectors over this period—lead to declining US import shares for most countries.

28The evidence on the effect of import competition on innovation activity is mixed. For example, Bloom et al.
(2016) find that increased trade with China between 2000 and 2005 led to an increase in patenting activity in
European firms that were more exposed to that competition (which was also the case for increased exposure
to trade from other low-wage countries). In contrast, Autor et al. (2020) find that import competition due to
increased trade with China decreased patenting activity in publicly listed US firms and technology classes
more exposed to that competition. In contrast, they find that changes in import penetration of high-wage
countries like the US had no effect on patenting. Nevertheless, we include this variable to mitigate concerns
that the estimated effects of imported embodied knowledge pick up these import competition effects.
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Estimating the separate effects of knowledge- and production-weighted imports of embodied

technology requires that there is sufficient variation across observations in our sample in

these two measures. To assess this, we regress the logs of both EmbTechK and EmbTechP

on the set of fixed effects included in our baseline specifications. Figure 2 plots the fitted

residuals from these regressions and a line of best fit from a regression of one set of residuals

on the other. The figure highlights that there is considerable orthogonal variation in the two

residualized variables.

Figure 2: Residualized Embodied Technology in Imports

Notes: Figure plots residuals of log(EmbT echP ) and log(EmbT echK) and the line

of best fit from the regression of the latter measure on the former. Residuals are

computed by regressing each measure on the set of fixed effects included in the

baseline specifications discussed in Section 5.3.

Other variables. We also include measures of the country-sector domestic and US stocks

of knowledge to control for alternative channels of diffusion. We construct the measure of the
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domestic knowledge stock as

OwnTechh
i,t =

∏
l

(
1 +

∑
p∈Pl

wl(p)Kp
i,t

)κl,h
i,t

, (8)

where wl(p) is the concordance weight discussed in Section 2. Higher values of OwnTech

reflect higher stocks in country-sector-year (i, h, t) knowledge that tend to be cited by sector

h. We use the domestic knowledge IO linkages κl,h
i,t in the construction because this is the best

measure of the relevance of sector l knowledge for producing innovations in country-sector-year

(i, h, t).29

Analogous to EmbTechK and EmbTechDiag, we also control for US knowledge stocks

relevant to a sector constructed as:

USTechh
t =

∏
l ̸=h

(1 +
∑

p∈Pl
wl(p)Kp

US,t)κl,h
US,t , (9)

USTechDiagh
t = 1 +

∑
p∈Ph

wh(p)Kp
US,t . (10)

These controls serve two purposes. First, they control for the effect of the growth in frontier

knowledge on each sector’s innovation activity that is common to all countries irrespective of

each country’s trade integration with the frontier economy. Since our choice of instrumental

variables (described in 5.4) preclude us from including the stricter sector-year level fixed

effects, these controls help in capturing part of sector-year trends relevant for knowledge

production that are common to all countries. Second, we expect that knowledge diffuses across

countries through mechanisms other than trade, and controlling for USTech captures some of

these aspects of knowledge diffusion. Diffusion can occur through direct technology licensing,

FDI, immigration, and other channels (Keller, 2004, 2010, 2021). Including USTech allows

us to separately identify the effect of traded embodied technology from broader technology
29We do not have highly detailed and dynamic measures of production IO linkages for most countries,

which prevents us from constructing a similar measure with ρl,h
i,t .
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diffusion across countries. Panel B of Table 2 provides summary statistics for all the technology

related variables discussed in this section.

Table 2: Summary Statistics

A: Outcome Variables B: Technology Variables
N Median Mean SD N Median Mean SD

Patentsh
i,t 478880 0.083 0.786 1.384 EmbTechKh

i,t 478880 16.090 15.788 3.119
FwdCitesh

i,t 478880 0.171 1.203 1.858 EmbTechP h
i,t 478880 13.129 12.604 4.088

FwdRateh
i,t 368950 1.394 1.405 0.745 EmbTechDiagh

i,t 478880 14.174 13.425 5.397
USBackCitesh

i,t 478880 0.403 1.585 2.151 OwnTechh
i,t 478880 2.471 3.160 3.003

USBackRateh
i,t 368950 2.198 2.129 0.988 USTechh

t 478880 10.988 10.827 1.200
USBackShareh

i,t 364724 0.498 0.486 0.194 USTechDiagh
t 478880 9.435 8.998 2.859

Notes: All outcome variables are averaged over the three-year window t to t + 2. All statistics for outcome variables are calculated on the log
of one plus the variable except for the statistics for USBackShare. All statistics for the technology variables are calculated on the log of the
variable.

5.3 Estimation Equation

We now present the empirical counterpart of Equation (2) in terms of our constructed variables

that serves as our baseline specification:

ln(1 + Outcomeh
i,t) = θ1 ln EmbTechKh

i,t−1 + θ2 ln EmbTechP h
i,t−1 + θ3 ln OwnTechh

i,t−1

+ θ4 ln EmbTechDiagh
i,t−1 + θ5 ln USTechh

t−1 + θ6 ln USTechDiagh
t−1

+ V h
i,t−1β + fi,t + f

n(h)
t + fh

i + ϵh
i,t,

(11)

where V h
i,t is a vector of controls that includes own-sector imports from the world and

exports to the world and fi,t, fn(h)
t and fh

i are country-year, (summary) sector-year, and

country-sector fixed effects. In the baseline regressions we lag all our regressors as well as

average outcomes over a three-year window from t to t + 2 to reduce noise and to allow

for a more gradual diffusion of knowledge. With the exception of USBackShare, we also

transform the outcome variable as ln(1 + Outcomeh
i,t) to keep observations that have zero

innovation/diffusion outcomes.

In all regressions, we allow for the possibility that the residuals are correlated across years
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within a country-sector pair (due to serial correlation) and across countries in each year

within a sector (since much of the variation in our variables of interest is at the sector-year

level). To do so, we estimate multi-way clustered standard errors at the country-sector and

sector-year levels (Cameron et al., 2011).

The coefficients of interest are related to model parameters as θ1 = ηSα, θ2 = ηS(1−α), θ3 =

ηZ , where α is the contribution of knowledge linkages towards cross-sectoral spillovers of

technology. The estimates of θ1 and θ2 should be positive since our hypothesis is that spillovers

from embodied technology imports should improve innovation outcomes. We also expect that

the estimates for θ1 will in general be larger than for θ2 since the knowledge weights reflect a

more direct measure of the relevance of embodied technology imports for patenting. Similarly,

the estimate of θ3 should be positive for the rate of innovating (Patents and FwdCites) but

may be ambiguous for the quality of patents if higher knowledge stocks correspond to higher

rates of low-quality innovations. For diffusion outcomes, the estimate of θ3 should be positive

for overall US citations and near zero for the other outcomes.

5.4 Endogeneity Concerns

The fixed effects in Equation (11) control for time-invariant characteristics of country-sector

pairs, factors that vary at the country level over time, and sector-year shocks that are common

to sectors within a summary sector. Despite the inclusion of these fixed effects, there remain

potential endogeneity concerns with our regressors of interest.

One possibility is that variation across country-sector-years in the amount of relevant

technology inputs embodied in a country’s imports in prior years could reflect demand

shocks for those inputs that also directly affect patenting outcomes. For example, shocks to

expected profits, captured by uh
i,t in the conceptual framework,30 would both increase R&D

30For example, demand shocks or policy driven shocks in a sector can change expected future profits in
that sector.
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investment but also the imports of intermediate inputs used in the production of goods in

(i, h, t).31 Similarly, shocks to domestic R&D productivity, captured by vh
i,t in the conceptual

framework, can give rise to endogeneity concerns. If domestic R&D and embodied technology

in cross-sector imports are substitutes in the production of new innovations, then shocks to

the domestic R&D productivity will reduce demand for embodied technology imports and

ordinary least squares estimates of the effects of embodied technology imports would suffer

from a negative bias. On the other hand, if imported embodied technology and R&D are

complements in the production of new innovations, then there would be a positive bias on the

OLS estimates. If these shocks were serially correlated, there would be a spurious correlation

between innovation output and imports of embodied technology in past years arising from

the shocks. Since there is no data available on R&D expenditures at the level of sectoral

disaggregation used in our analysis, we cannot control for these innovation inputs which may

cause an omitted variable bias to affect our estimates.

To address these concerns, we use an instrumental variable strategy that focuses on

variation in US imports that is a function of supply shocks to US exports. Specifically, we

instrument each regressor that includes US imports with an instrument that constructs the

variable using US exports to all countries outside of a country-specific cluster (discussed

below). For our main outcomes, we construct the instrumental variables as

IV EmbTechKh
i,t =

∏
l ̸=h

(
1 +

∑
p∈Pl

(wl(p)Kp
US,tX

p
US,i,t)

)κl,h
US,t

, (12)

and

IV EmbTechP h
i,t =

∏
l ̸=h

(
1 +

∑
p∈Pl

(wl(p)Kp
US,tX

p
US,i,t)

)ρl,h
US,t

, (13)

where Xp
US,i,t = ∑

j /∈Ci
Mp

US,j,t and Ci is a cluster of countries with similar characteristics to
31We do not explicitly model demand for production inputs from different sectors and instead implicitly

subsume them into the expected profit function.
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country i. We construct the cluster Ci as the countries that fall into both the same quintile of

GDP-per-capita (in 1995) and total trade (imports plus exports) to GDP ratio as country

i.32 We include the first variable to capture similarities in technological development across

countries and the second variable to capture similarities in trade patterns across countries.

Our instrumental variable strategy isolates trade flows to the domestic country that stem

from supply shocks in the US. A standard leave-one-out instrument would exclude the

domestic economy to discount changes in trade that result from domestic demand shocks.

We extend this intuition by not only excluding the domestic economy but also countries that

share similar characteristics and, consequently, may face demand shocks that are correlated

with those facing the domestic country.

Although the instrumental variables correct for demand shocks to imports that vary at

the country-sector-year level, we would be remiss not to mention the principal endogeneity

concern that may still be present. If there are demand shocks to imports at the sector-year

level for sectors within a BEA summary sector that are common across all countries, our

instruments may reflect these demand shocks rather than US export supply shocks. Since

the instruments is constructed at the sector-year level, we are unable to include sector-year

fixed effects, at the same level of disaggregation, and so cannot preclude that these common

demand shocks affect our estimates.33

6 Results

We discuss the results from estimating the effects of knowledge-weighted and production-

weighted embodied technology imports on the innovation and diffusion outcomes. We report

the estimates using the baseline specifications described in Equation (11) and use the empirical
32We use the entire sample of countries that we have data, not just those included in the final sample.
33While this may be the case, because our sample includes many countries at a wide range of stages of

development and with different patterns of trade with the US, it is unlikely that there are sector-year demand
shocks common to all the countries in our sample.
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model to quantify the magnitudes of the results. We close this section by discussing the

robustness of the results to alternative specifications.

6.1 Baseline Results

Table 3 reports the results for the innovation and diffusion outcomes. We interpret the

innovation results as corresponding to Xh
i,t in the context of the conceptual framework. All

regressions include country-sector, summary sector-year, and country-year fixed effects as

described in the model and standard errors are clustered at the country-sector and sector-year

levels. The IV estimates are larger than the OLS estimates (reported in Appendix D) for

knowledge-weighted embodied technology imports EmbTechK and are similar for production-

weighted embodied technology imports EmbTechP .

Table 3: Main Results

(1) (2) (3) (4) (5) (6)
Patents FwdCites FwdRate USBackCites USBackRate USBackShare

ln EmbTechK 0.666*** 0.545*** 0.052 1.023*** 0.076 0.002
(0.048) (0.054) (0.048) (0.082) (0.055) (0.011)

ln EmbTechP 0.003** 0.002* -0.001 0.005* 0.000 0.000
(0.001) (0.001) (0.001) (0.002) (0.002) (0.000)

ln EmbTechDiag 0.019 0.001 -0.013 0.023 0.012 0.004
(0.012) (0.012) (0.012) (0.021) (0.015) (0.003)

ln OwnTech 0.005** 0.006** -0.047*** 0.019*** -0.051*** -0.005***
(0.002) (0.002) (0.004) (0.004) (0.005) (0.001)

ln USTech -0.761*** -0.596*** -0.086 -1.130*** -0.128 -0.007
(0.064) (0.072) (0.070) (0.110) (0.079) (0.017)

ln USTechDiag 0.097*** 0.165*** -0.003 0.261*** 0.109*** 0.009
(0.015) (0.016) (0.022) (0.026) (0.026) (0.006)

Observations 478,880 478,880 368,950 478,880 368,950 364,724
F-Stat EmbTechK 412.6 412.6 609.6 412.6 609.6 686.7
F-Stat EmbTechP 12806.4 12806.4 17535.9 12806.4 17535.9 18557.1
F-Stat EmbTechDiag 322.1 322.1 349.5 322.1 349.5 350.0

Notes: All dependent variables are first averaged over the three-year window t to t+2, and transformed as follows: ln(1+Outcome),

where Outcome is the variable specified on column titles. Other controls include Lags of log total exports to world and log total

imports from world. The following fixed effects are included in each column: Country*Sector, Country*Year, and Summary-

Sector*Year. All standard errors are clustered twoways: Country*Sector and Sector*Year

The innovation outcomes, reported in columns (1) to (3), point to a positive impact
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from knowledge-weighted and production-weighted embodied technology imports EmbTechK

and EmbTechP on the innovation rate, as measured by Patents and FwdCites. The effect

appears to be primarily through the extensive margin (i.e., more patenting) rather than the

intensive margin (i.e., more citations). The elasticity of innovation outcomes with respect

to shocks to EmbTechP is substantially lower than for EmbTechK, by multiple orders

of magnitude, for both Patents and FwdCites, suggesting that technology spillovers are

primarily through knowledge linkages. We show later that the quantitative comparison holds

after accounting for the relative variation in EmbTechK and EmbTechP .

The diffusion outcomes, reported in columns (4) to (6), point to positive, albeit more mixed,

impacts of knowledge-weighted and production-weighted technology imports EmbTechK and

EmbTechP . The coefficient estimates for USBackCites are positive for both EmbTechK

and EmbTechP . To some extent, this follows from the previous result since more frequent

patenting implies more backward citations to the US, all else equal.

For USBackRate and USBackShare the point estimates are positive, in line with our

expectations, but the estimates are statistically insignificant. The results suggest that while

knowledge-weighted and production-weighted embodied technology imports improve innova-

tion outcomes, knowledge may diffuse through channels that do not result in citations. That

said, the estimates of EmbTechK for USBackRate are more mixed than when looking at

alternative specifications (see Appendix D). This is consistent with the point estimate of

USBackCites relative to that of Patents, with the former being almost twice as large as the

latter in Table 3. We expect that for both USBackRate and USBackShare the estimated

coefficient is biased downwards since our measure of backward citations is noisier than for

Patents and FwdCites. Specifically, our measure includes citations on any previous US

patent, many of which may include innovations that are already well-understood in the

domestic economy. Additionally, many countries may not require or enforce that domestic
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patents cite foreign patents making backward citations a noisy measure of diffusion.34 Another

possibility is that innovators learn both about US patents but also other foreign innovations

through US patents. For example, an innovator may learn about a French innovation that

is built on by a US product and cite that patent instead. In this regard, we think of both

USBackRate and USBackShare as being relatively strict measures of diffusion.

The coefficient for EmbTechDiag is near zero reflecting that this variable captures several

channels with potentially opposing impacts on innovation, such as, for example, competition

from imports and knowledge spillovers. We do not focus on the spillovers through this channel

due to the aforementioned difficulties with their interpretation. The coefficients for OwnTech

are positive for Patents and FwdCites suggesting that the stock of domestic knowledge

relevant to a country-sector contributes positively to its innovation rate.

The coefficient on USTech, which measures relevant upstream knowledge produced by

the US, is negative in our baseline results. While this measure captures broader technology

diffusion from the US to other countries, it is also correlated with our measure of EmbTechK.

A change in USTech will also result in a change in EmbTechK since both measures have

the same underlying IO linkages and US technology levels by construction. This means that

the negative estimate cannot be interpreted as the effect of USTech, holding all else fixed.

In order to understand the effect of USTech, we first residualize EmbTechK by regressing

USTech on it and taking the residual. We then run our baseline regressions by replacing

EmbTechK with its residualized version and keeping all other regressors the same. By the

Frisch-Waugh-Lowell theorem, the estimates on all regressors except USTech will remain

the same. The new estimate on USTech is positive, and can now be interpreted as the effect

of USTech that is orthogonal to the trade-weighted US technology measure EmbTech. The
34Our choice to allocate patents based on the location of the innovator would add noise to both measures.

For example, a citation to a patent with 50% US innovators and 50% French innovators would not increase
USBackShare even if local innovators learned about the patent through interactions with the US innovators
US employer.
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details of this exercise are presented in Appendix C.1.

6.2 Quantitative Significance

Our conceptual framework implies the estimation Equation (2), where the innovation rate

Xh
i,t+1 depends on embodied technology imports EmbTech through an elasticity ηS and the

IO linkages γl,h
F,t, which equals the knowledge κl,h

US,t and production ρl,h
US,t weights for the US

scaled by α and 1 − α, respectively. Taking the estimates for Patents and FwdCites implies

that ηSα ∈ [0.54, 0.67] and ηS(1 − α) = [0.002, 0.003].

To further understand the quantitative magnitude of the results, Table 4 compares the

relative magnitude of the variation in the outcomes and the implied variation of outcomes

attributable to the model variables. We focus on the residualized standard deviation of the

explanatory variables, RSDE, which is calculated as the standard deviation of the variable

after removing the estimated effect of all other regressors and fixed effects. The residual

variation in the outcome variables, RSDO, is the standard deviation of the outcome variable

in question after removing the estimated effect of the fixed effects. We do this to remove both

variable trends as well as cross-country and cross-summary-sector variation in the variables.

These differences are important for both the outcomes (e.g., increases in patenting over time)

and embodied technology imports (e.g., increases in trade over time). However, these trends

are not important for understanding the economic significance of the coefficient estimates.35

We estimate the effect of the RSDE of the explanatory variables implied by the model and

scale them by the RSDO of the outcome variables.

The table shows that EmbTechK explains around 13% of the residualized variation in

Patents, 6.5% of the variation in FwdCites, and around 8.8% for USBackCites. Consistent

with the earlier summary statistics, the table also shows that there is more residualized
35For example, the inability of the empirical model to explain a secular trend in patenting over time is not

informative to understanding the importance of embodied technology imports.
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Table 4: Quantitative Significance

Coefficient Estimate Relative Implied RSD (%)

Outcome RSDO EmbTechK EmbTechP EmbTechK EmbTechP

(RSDE = 0.037) (RSDE = 1.197)

Patents 0.185 0.666 0.003 13.2 0.06
FwdCites 0.308 0.545 0.002 6.5 0.03
FwdRate 0.478 0.059 -0.001 0.5 -0.01
USBackCites 0.427 1.023 0.005 8.8 0.04
USBackRate 0.616 0.084 0.000 0.5 0.00
USBackShare 0.139 0.002 0.000 0.0 0.01

Notes: RSDO is calculated as the standard deviation of the outcome variable after controlling for the fixed effects used in the

baseline specification, Equation (11). RSDE is calculated as the standard deviation of the explanatory variable after controlling

for the other regressors and fixed effects used in that specification. For each of EmbT echK and EmbT echP , relative implied

RSD refers to the product of the coefficient estimate and the ratio of the RSDE to the RSDO. Coefficient estimates are taken

from Table 3.

variation in EmbTechP , which increases its relative quantitative importance, but this gap is

not large enough to offset the differences in coefficient estimates found in Table 3. That is,

the overall impact of production-weighted embodied technology imports remains marginal

compared with knowledge-weighted embodied technology imports.

6.3 The Role of Trade Flows in Technology Diffusion

As discussed, we do not expect technology to diffuse across borders only through trade

linkages. We now consider a falsification exercise to help understand the role trade plays in

this diffusion process. A first step towards identifying the role of trade, separate from broader

diffusion channels, is by controlling for sector-relevant upstream US technology, USTech, as

in our baseline specification. Our baseline results suggest that trade plays an important role

in the form of diffusing embodied technology even after controlling for the same upstream

technology that is not augmented by trade flows.
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To further address these concerns, we conduct a falsification test by randomizing the trade

flows data used in the construction of our embodied technology variables. Specifically, we

take the true imports from the US data for all countries that the data is available for, and

randomize their allocation across years, countries, and sub sectors.36 We construct the ran-

domized counterparts of the embodied technology variables, which we label as EmbTechK(r),

EmbTeckP (r), and EmbTechDiag(r) where r stands for the rth randomization of trade

flows. We then re-estimate our baseline specification using the randomized variables for 100

draws of randomized variables.

ln(1 + Outcomeh
i,t) = θr

1 ln EmbTechKh
i,t−1(r) + θr

2 ln EmbTechP h
i,t−1(r) + θr

3 ln OwnTechh
i,t−1

+ θr
4 ln EmbTechDiagh

i,t−1(r) + θr
5 ln USTechh

t−1 + θr
6 ln USTechDiagh

t−1

+ V h
i,t−1βr + fr

i,t + f
rn(h)
t + frh

i + ϵh
i,t.

(14)

Figure 3 shows the distribution of estimates θr
1, θ

r
2, and θr

4 from the regression specification

in Equation (14) for Patents as the outcome variable. The mean of the randomized model

coefficient estimates is plotted as a dashed green line and the baseline estimates are plotted as

a solid red line. The falsification test confirms that the trade weights used in the EmbTechK

measure are important, with the baseline estimate (0.666) being eight times higher than the

mean of the coefficients from the randomized data (0.084). However the baseline estimate on

EmbTechP and its counterpart from the randomized data are relatively smaller and close

to each other (0.003 and 0.005). This could indicate that diffusion of embodied technology

through production linkages might not be a robust feature of the data. Finally, the coefficients

on the own-sector embodied technology, EmbTechDiag, from the randomized data (mean

of 0.001) are also an order of magnitude smaller compared to the larger, but statistically

insignificant, baseline estimate (0.019). We conclude that the randomized data is unable

to replicate the coefficient estimates for knowledge-weighted embodied technology imports,
36See Appendix C.2 for details of the randomization procedure.
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Figure 3: Falsification Test: Randomizing Trade flows

Notes: Figure displays the histograms of the coefficients θr
1 , θr

2 , and θr
4 from the regression specified in Equation 14 for 100 draws

of trade flows randomization. The dependent variable in all exercises is P atents. The green dashed line represents the mean
of the corresponding distributions, while the red solid line represents the respective coefficient of interest from the baseline
regression specified in Equation 11.

highlighting the importance of trade.37

6.4 Robustness Checks and Additional Results

In Appendix D we consider the robustness of the main results to alternative specifications and

controls as well as present additional related results. The results are quantitatively similar

when alternative lag structures are used instead of the baseline specification. Our baseline

results construct EmbTechK and EmbTechP using upstream linkages. We show that the

results hold when the corresponding variables constructed with downstream linkages are

included. The results become stronger when the country sample is restricted to the top 40

countries based on patenting, consistent with our view that less patenting countries are noisier.

The results hold using alternative IV strategies, including the traditional leave-one-out IV.

The results hold using alternative transformation of the outcome variables that avoid the

log of one plus transformation. Finally, the results hold for alternative outcomes, based on

triadic patents, and constructions of knowledge stocks.
37We present the results of the falsification exercises for other outcome variables in Appendix C.2.
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7 Conclusion

Innovation activities are highly concentrated in a small number of countries, but new technol-

ogy eventually diffuses to other countries. A potentially important channel through which

technology diffuses across borders is international trade of goods, since importers can learn

about the technology embodied in those goods. This paper assesses the extent to which

knowledge and production inputs in traded goods contribute to the diffusion of technology

and to the amount and quality of innovations developed in importing country-sector pairs.

To do this, we construct knowledge and production IO tables using data on inter-sectoral

patent citations and sales. We combine these measures with data on sector-level trade flows

between countries to construct measures of the knowledge-weighted and production-weighted

technology imports. We show that increases in both measures of embodied technology lead

to higher rates of innovation in an importing country-sector pair.

Our results point to important directions for future research, including towards better

understanding the mechanisms underlying the trade channel of technology diffusion. For

example, since knowledge linkages are a more important source of diffusion than production

linkages and the sources of knowledge linkages are distinct from production linkages, diffusion

through the trade of goods may not primarily occur between firm relationships that underpin

our sector-level import data. Instead, spillovers may primarily be to other firms in importing

countries. Future work using firm-level data can investigate the presence of these spillovers

through knowledge IO linkages. The estimated elasticities in this paper could also be used to

discipline a quantitative model to evaluate the aggregate growth and welfare implications of

knowledge diffusion through trade and the effects of trade policy on innovation.
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Appendix A Comparison of IO Tables

In this appendix, we provide descriptive comparisons of the knowledge and production IO
tables of the US economy and of the US and non-US knowledge IO tables. We highlight five
observations that emerge from these exercises. The first three concern the cross-sectional
relationship between the US knowledge and production IO tables. The fourth observation
assesses the differences in the time-series characteristics of the US knowledge and production
IO tables. The final observation compares the knowledge IO tables of non-US countries with
those of the US across different years.

A.1 Cross-Sectional Correlations of US IO Linkages

Our empirical analysis, which compares the effects of imports of technology embodied in
knowledge and production inputs on patenting outcomes, depends to a large extent on there
being distinct variation in the sources of those inputs for the average sector in order to draw
the inferences that we do. That this is the case may seem immediate from visual inspection
of Figure 1, but here we formalize this underpinning of our analysis. At a high level, the
Pearson correlation of κl,h

US,2002 and ρl,h
US,2002 across all 85,264 sector-pair IO linkages for the

292 sectors depicted in the figure is 0.179, while for the off-diagonal IO linkages it is 0.130.
While this is reassuring, we are primarily concerned with the potential that knowledge and

production input sources are highly correlated on average within output sectors. To address
this, we compute the linear (Pearson) and rank (Kendall adjusted for ties) correlations of
κl,h

US,t and ρl,h
US,t across all input sectors l for each output sector h for each of the four years

t for which we use the IO tables to construct the explanatory variables in our empirical
analysis (i.e., 1992, 1997, 2002, and 2007).38 For each IO table year, the former of these
measures evaluates the covariance between knowledge and production inputs and hence their
cardinal relationship while the latter evaluates the similarity of the rankings of knowledge
and production input sources and hence their ordinal relationship. In Figure A.1, we plot the
distributions of these correlations. One can see that while there are some sectors for which
knowledge and production input sources are highly correlated, this is not the case for the
vast majority of sectors in each of the four IO table years.

More formally, we display summary statistics of these distributions in Table A.1. Looking
38For the exercises in all sections of this appendix except Appendix A.3, we drop industries that do not

make use of inputs from any of the 292 input sectors used in our baseline analysis in at least one of the US
knowledge or production IO tables, which leaves 287 sectors. We then renormalize the IO linkages by output
sectors’ total input usage of the remaining input sectors in each year.
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Figure A.1: Distributions of Cross-Sectional Correlation Coefficients of US IO Linkages
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Notes: Figure plots the distributions of correlation coefficients of US IO Linkages for different IO table years.
Coefficients are computed as the correlation of US knowledge and production IO linkages across all input sectors for
each output sector in each year. The left panel displays the distributions of the Pearson correlation coefficients
while the right panel displays the distributions of the Kendall rank correlation coefficients (adjusted for ties).

across IO table years, there appears to be a decreasing trend in the average correlation of US
knowledge and production IO linkages across our sample period. We also include statistics for
the distributions of correlation coefficients computed using only off-diagonal IO linkages to
show that differences in the intensity of use of own-sector knowledge and production inputs
are not driving the low average correlations. We now state our first observation regarding the
comparison of the knowledge and production IO tables.

Observation 1: The sources of knowledge and production inputs are not highly correlated
for the average sector in the US.

A.2 Concentration and Sparsity of IO Linkages

Next, we investigate another major cross-sectional difference between the US knowledge and
production IO tables: knowledge inputs tend to be drawn from a wider range of sectors and
are less concentrated across input sectors than are production inputs.

To demonstrate this, we compute two measures of the concentration or sparsity of input
sources for each output sector using the knowledge and production IO linkages from each of
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Table A.1: Summary Statistics of Cross-Sectional US IO Linkage Correlation Coefficients

N Min Max Median Mean Std. Dev.

Pearson Correlation Across All Inputs
1992 287 -0.004 0.921 0.249 0.295 0.224
1997 287 -0.027 0.861 0.170 0.237 0.213
2002 287 -0.033 0.922 0.156 0.204 0.191
2007 287 -0.023 0.825 0.155 0.202 0.181
All Years 1,148 -0.033 0.922 0.174 0.235 0.206

Kendall Rank Correlation Across All Inputs
1992 287 0.044 0.386 0.247 0.247 0.053
1997 287 0.022 0.326 0.192 0.190 0.053
2002 287 0.042 0.343 0.201 0.200 0.051
2007 287 0.020 0.291 0.173 0.171 0.049
All Years 1,148 0.020 0.386 0.202 0.202 0.058

Pearson Correlation Across Off-Diagonal Inputs
1992 287 -0.034 0.915 0.205 0.248 0.206
1997 287 -0.026 0.862 0.132 0.188 0.196
2002 287 -0.037 0.923 0.100 0.150 0.167
2007 287 -0.037 0.825 0.110 0.155 0.161
All Years 1,148 -0.037 0.923 0.132 0.185 0.187

Kendall Rank Correlation Across Off-Diagonal Inputs
1992 287 0.032 0.381 0.243 0.242 0.053
1997 287 0.012 0.320 0.186 0.184 0.054
2002 287 0.044 0.336 0.194 0.193 0.051
2007 287 0.022 0.284 0.166 0.164 0.049
All Years 1,148 0.012 0.381 0.194 0.196 0.059

Notes: Table reports summary statistics of the distributions of cross-sectional correlation coefficients of US knowledge and
production IO linkages. Coefficients for off-diagonal sectors omit the own-sector IO linkage in the calculation. Std. Dev. is the
standard deviation.

the US IO tables. First, we calculate the Herfindahl-Hirschman Index (HHI) of knowledge and
production IO linkages for each output sector. For output sector h, these indices are defined
as HHI-Kh

US,t = ∑
l∈H(κl,h

US,t)2 for knowledge IO linkages and HHI-Ph
US,t = ∑

l∈H(ρl,h
US,t)2 for

production IO linkages. Second, we construct conditional indegrees (CID) for each IO table
that measure the number of input sectors that have an IO linkage with an output sector
that is larger than some threshold level c.39 For output sector h, the conditional indegree for
knowledge IO linkages is CID-Kh

US,t(c) = ∑
i∈H 1(κl,h

US,t ≥ c) and for production IO linkages
is CID-Ph

US,t(c) = ∑
i∈H 1(ρl,h

US,t ≥ c), where 1(·) is the indicator function.
39As a matter of terminology, we align the meaning of indegree with that of an input sector. However, other

authors such as Cai and Li (2019) refer to what we call indegrees as outdegrees in the context of knowledge IO
linkages because citations, the data that underlie these measures, flow from an output sector (or technology
subclass) to an input sector (technology subclass).
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Figure A.2: Distributions of Concentration and Sparsity of US IO Linkages
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Notes: Figure plots the distributions of the concentration and conditional indegree measures of US knowledge and
production IO linkages across output sectors and the four IO table years. The left panel displays the distributions
of concentration measured by the HHI. The right panel displays the distributions of conditional indegrees for the
condition c = 1%. The HHI and conditional indegrees are defined in text.

In Figure A.2, we depict the distributions of the HHI and CID measures for both knowledge
and production IO linkages.40 These graphs show that the mass of the distribution of the
concentration of knowledge IO linkages lies to the left of that of the distribution of the
concentration of production IO linkages while the reverse is true for the distributions of
conditional indegree measures.

Table A.2 lists summary statistics of these distributions as well as the distributions of
the HHI and CID measures computed using only off-diagonal input sectors. For this latter
group of distributions, we modify the definitions of the knowledge and production IO linkages
such that, for output sector h, the denominators of Equation (3) and Equation (4) only sum
over input sectors l ≠ h.41 Knowledge IO linkages are less concentrated than production IO
linkages, in part because for the average output sector there are fewer significant knowledge
input sectors than production input sectors (where significant means larger than 1% here).

40Since the distributions are quite similar across IO table years for both knowledge and production IO
linkages, we group the concentration and sparsity measures across all four years into a single distribution for
each IO table for visual clarity. The distributions for each IO table year are displayed in Figure D.2 and their
summary statistics are shown in Table D.12.

41This ensures that the shares used to compute the HHI sum to one.
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Table A.2: Summary Statistics of IO Linkage Concentration Measures

Min Max Median Mean Std. Dev.

All Inputs
HHI-Kh

US,t 0.013 0.321 0.037 0.047 0.035
HHI-Ph

US,t 0.024 0.918 0.128 0.173 0.138
CID-Kh

USt(1%) 8 34 22 21.866 4.624
CID-Ph

US,t(1%) 2 34 15 15.582 6.062

Off-Diagonal Inputs
HHI-Kh

US,t 0.013 0.319 0.033 0.041 0.028
HHI-Ph

US,t 0.024 0.970 0.123 0.180 0.159
CID-Kh

US,t(1%) 8 34 23 22.820 4.664
CID-Ph

US,t(1%) 1 34 16 15.824 6.158

Notes: Table reports summary statistics of the cross-sectional distributions of the Herfindahl-Hirschman Index (HHI) and condi-
tional indegree (CID) measures of US knowledge and production IO linkages across the 1992, 1997, 2002, and 2007 IO tables.
For measures computed using off-diagonal sectors, own-sector IO linkages are omitted from the calculation of the IO linkages.
The HHI and CID measures are defined in text. The CID measures count IO linkages that are at least 1%. Std. Dev. is the
standard deviation.

We interpret this contrast between the two IO tables as implying that the production IO
table is more sparsely connected than the knowledge IO table. This figure and table lead
us to our second observation on the differences between the knowledge and production IO
tables.

Observation 2: The sources of production inputs are more highly concentrated than the
sources of knowledge inputs for the average sector in the US.

A.3 Key Input Sectors

The last major cross-sectional distinction between the knowledge and production IO tables
that we explore is the difference between the input sectors that are important suppliers of
inputs throughout the US economy across the two tables. To do this, we consider alternative
measures of the economy-wide importance of input sectors and show using each of these
measures that the ranking of input sector importance varies across the US knowledge and
production IO tables.42

In particular, we consider three network centrality measures that characterize input
sector importance. First, we compute the conditional outdegree (COD) of each input
sector analogously to the CID measures discussed in Appendix A.2. For input sector l,
these outdegrees are COD-Kl

US,t(c) = ∑
h∈H 1(κl,h

US,t ≥ c) for knowledge IO linkages and
42We focus here on the 2002 US IO tables to illustrate our findings and include all 292 sectors as in Figure 1.
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COD-Pl
US,t(c) = ∑

h∈H 1(ρl,h
US,t ≥ c) for production IO linkages. Second, we use the (uncon-

ditional) weighted outdegree (WOD) of input sectors with WOD-Kl
US,t = ∑

h∈H κ
l,h
US,t for

knowledge IO linkages and WOD-Pl
US,t = ∑

h∈H ρ
l,h
US,t for production IO linkages. Finally,

we calculate the authority weight centrality (AWC) developed by Kleinberg (1999) that
represents the contribution of each input sector to the entire knowledge or production IO
table and is determined simultaneously with the hub weight centrality (HWC) that represents
the absorption of inputs of each output sector from the knowledge or production IO table.43

In our context, these measures are defined by

AWC-Kl
US,t = λK

∑
h∈H

κl,h
US,tHWC-Kh

US,t

HWC-Kl
US,t = µK

∑
h∈H

κh,l
US,tAWC-Kh

US,t

for knowledge IO linkages and

AWC-Pl
US,t = λP

∑
h∈H

ρl,h
US,tHWC-Ph

US,t

HWC-Pl
US,t = µP

∑
h∈H

ρh,l
US,tAWC-Ph

US,t

for production IO linkages, where λK (λP ) and µK (µP ) are the Euclidean norms of the
vectors of {AWC-Kl

US,t}l∈H ({AWC-Pl
US,t}l∈H) and {HWC-Kl

US,t}l∈H ({HWC-Pl
US,t}l∈H), re-

spectively.
To illustrate that the key input sectors are different across the IO tables, we reproduce

versions of Figure 1 in which we reorder sectors according to the ranking of sectors by these
three centrality measures in the 2002 US IO tables. In Figure A.3, we order sectors in each
panel by the rank of sectors of the corresponding centrality measure in the knowledge IO
table. Sectors follow the same order in the plot of both the knowledge and production IO
tables.

It is clear from Figure A.3 that the importance of a sector as a supplier of inputs in the
knowledge IO table is not highly related to the importance of the sector as a supplier of
inputs in the production IO table.44 We close this section by stating our third observation
from comparing the US knowledge and production IO tables.

43Cai and Li (2019) document that the authority weight centralities of sectors and patent technology classes
are important determinants of sector-level and firm-level innovation activity.

44When sectors are instead ordered by the rankings of the centrality measures constructed using production
IO linkages, the reverse implication is visually apparent (see Figure 1).
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Figure A.3: Key Input Sectors in the Knowledge IO Table
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Notes: Figure plots the US knowledge and production IO tables in 2002 with sectors ordered by the rank of the centrality
measures constructed using knowledge IO linkages. Within each panel, the row position of each output sector and column
position of each input sector is held constant across both IO tables. Panel A ranks sectors by the conditional outdegrees for the
condition c = 1%. Panel B ranks sectors by the weighted outdegree. Panel C ranks sectors by the authority weight centrality.
Each centrality measure is defined in text. IO linkages are defined in Section 4.1. All plots only display IO linkages that account
for at least 1% of the inputs used by an output sector.
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Figure A.4: Distributions of Autocorrelations of US IO Linkages
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Notes: Figure plots the distributions of autocorrelation coefficients of US IO Linkages for different lags using the
1992, 1997, 2002, and 2007 IO tables. Coefficients are computed as the Pearson autocorrelation of US knowledge
and production IO linkages across all input sectors for each output sector. IO linkages are defined in Section 4.1.

Observation 3: The key input-supplying sectors are distinct in the US knowledge and
production IO tables.

A.4 Persistence of US IO Linkages

The measures of technology embodied in knowledge and production inputs imported from
the US are constructed using IO linkages that vary across years. We allow for this temporal
variation because the relevance of different sources of knowledge and production inputs for
generating new innovations need not be fixed over time. We now describe the extent to which
US knowledge and production IO linkages vary across time at different time horizons and
compare the persistence of input sources on average across output sectors in the knowledge
and production IO tables.

To do so, we make use of the IO tables for the four years used to construct the explanatory
variables in our empirical analysis (i.e., 1992, 1997, 2002, and 2007). For both the knowledge
and production IO tables, we compute the autocorrelations of the IO linkages of each output
sector across all input sectors between pairs of IO tables for different years and group
these autocorrelations by the number of years between the tables. This provides us with
distributions of autocorrelations (measured using the Pearson correlation coefficient) for both
knowledge and production IO linkages at lag lengths of five, ten, and fifteen years. We plot
these distributions in Figure A.4, separating out the distributions for different lag lengths
into their own charts for visual clarity.

Unsurprisingly, the distribution of autocorrelations shifts to the left as the lag length
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Table A.3: Summary Statistics of US IO Linkage Autocorrelations

N Min Max Median Mean Std. Dev.

5-Year Lag
Knowledge IO 861 0.730 1.000 0.990 0.984 0.025
Production IO 861 0.044 1.000 0.839 0.777 0.205

10-Year Lag
Knowledge IO 574 0.514 0.999 0.967 0.950 0.056
Production IO 574 0.014 1.000 0.751 0.699 0.227

15-Year Lag
Knowledge IO 287 0.534 0.999 0.938 0.918 0.074
Production IO 287 0.019 0.998 0.650 0.628 0.230

Notes: Table reports summary statistics of the distributions of Pearson autocorrelation coefficients of US knowledge and produc-
tion IO linkages for the 287 output sectors that have non-zero input usage for at least one input sector in each of the 1992, 1997,
2002, and 2007 US knowledge and production IO tables. Std. Dev. is the standard deviation. IO linkages are defined in Section 4.1.

between the IO tables increases; the sources of inputs for the average output sector in each
year are more highly correlated with the sources used in years that are closer in time to
that year than with those used in more distant years. More interestingly, the charts make
clear that at all three time horizons, the average autocorrelation of knowledge IO linkages is
substantially higher than it is for production IO linkages. These visual insights are confirmed
by the summary statistics of the distributions of autocorrelations presented in Table A.3.45

This evidence supports our fourth observation on the differences between sources of knowledge
and production inputs.

Observation 4: For the average sector in the US, the sources of knowledge inputs are
more highly correlated across time than the sources of production inputs.

We also examine the inter-temporal cross-table correlation of US knowledge and Production
IO linkages. For each sector, we compute the Pearson correlations of knowledge IO linkages
and production IO linkages across all input sectors for each pair of IO table years. We report
the means of the distribution of these cross-table correlations for each pair of IO table years
in Table A.4. Across all pairs of IO table years, the average correlation is similar in the
cross-section and across time. Despite these similarities, there average cross-table correlations
tend to be slightly larger for earlier years than for later years for both the knowledge and
production IO linkages.

45These patterns remain the same when using the Kendall rank correlation coefficient rather than the
Pearson correlation coefficient to compute the autocorrelations and when using only off-diagonal IO linkages
to compute the correlations. These additional results are available on request.
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Table A.4: Cross-Table Correlations of US IO Linkages Across Time

Production IO Linkages

1992 1997 2002 2007

1992 0.295 0.249 0.236 0.250
Knowledge

IO Linkages
1997 0.282 0.237 0.224 0.237
2002 0.259 0.218 0.204 0.216
2007 0.245 0.205 0.191 0.202

Notes: Table reports means of the distributions of cross-table correlation coefficients of US Knowledge and Production IO linkages
across different pairs of IO table years. Coefficients are computed as the Pearson correlation of knowledge and production IO
linkages across all input sectors for each output sector in each pair of years.

A.5 Evolution of Knowledge IO Linkages Across Countries

To control for the effects of past domestic innovation activity on new patenting and citation
activity in sectors in importing countries, we weight upstream domestic knowledge stocks by
the relevance of input sectors for generating new innovations in the importing country. As
with the IO linkages used to weight US technology embodied in imported inputs, we allow
these importer-sector-specific weights to vary over time. We now document the degree to
which knowledge IO linkages in sectors in non-US importing countries change over time and
the relationship between those IO linkages and the US knowledge IO linkages across the IO
tables from the four years used to construct our explanatory variables.46

We begin by computing the autocorrelations of IO linkages in each country-sector at
different time horizons using the same approach as in Appendix A.4. The distributions of
these autocorrelations are plotted in Figure A.5, and the summary statistics of these measures
are reported in the panel A of Table A.5. The knowledge IO linkages in sectors in importing
countries are on average substantially less persistent than those of US sectors at each of
the three time horizons we consider. In other words, the knowledge IO linkages in many
country-sectors are not stable across time.

Given our focus on imports of embodied technology from the US, we examine the rela-
tionship between knowledge IO linkages in importing countries and the US. We compute the
cross-sectional correlations of each output sector’s IO linkages between each importer and
the US for each of the four IO table years. We plot the distributions of these correlations in
the left panel of Figure A.6 and display their summary statistics in panel B of Table A.5.
Although the knowledge IO linkages in many country-sectors are highly correlated with the

46We use the same 287 sectors for the 1992, 1997, 2002, and 2007 IO tables as in Appendix A.4. The IO
linkages are renormalized within each year such that they sum to one across input sectors for each output
sector in each country in each IO table.
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Figure A.5: Distributions of Autocorrelations of non-US Knowledge IO Linkages
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Notes: Figure plots the distributions of autocorrelation coefficients of non-US IO Linkages for different lags using
the 1992, 1997, 2002, and 2007 IO tables. Coefficients are computed as the Pearson autocorrelation of knowledge IO
linkages across all input sectors for each output sector in each country. IO linkages are defined in Section 4.1.

Table A.5: Summary Statistics of non-US knowledge IO Linkage Correlations

N Min Max Median Mean Std. Dev.

A: Autocorrelations of non-US Knowledge IO Linkages
5-Year Lag 55,528 -0.048 1.000 0.926 0.788 0.281
10-Year Lag 34,196 -0.052 1.000 0.737 0.628 0.329
15-Year Lag 15,946 -0.056 0.999 0.698 0.603 0.324

B: Correlations with US Knowledge IO Linkages
1992 16,444 -0.035 0.999 0.754 0.653 0.302
1997 19,419 -0.035 0.999 0.755 0.662 0.291
2002 21,223 -0.036 0.999 0.789 0.694 0.272
2007 23,414 -0.043 0.999 0.802 0.714 0.257

Notes: Panel A reports summary statistics of the distributions of Pearson autocorrelation coefficients of non-US knowledge IO
linkages for the 287 output sectors that have non-zero input usage for at least one input sector in each of the 1992, 1997, 2002,
and 2007 US knowledge and production IO tables. Panel B reports summary statistics of the distributions of Pearson correlation
coefficients between US and non-US knowledge IO linkages across country-sectors for each IO table. Std. Dev. is the standard
deviation. IO linkages are defined in Section 4.1.
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Figure A.6: Correlations of Importer and US Knowledge IO Linkages
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Notes: The left panel plots the distributions of cross-sectional correlations of knowledge IO linkages between the US
and each other country for each of the 1992, 1997, 2002, and 2007 IO table years. Coefficients are computed as the
Pearson correlation of knowledge IO linkages across all input sectors for each output sector in each country. IO
linkages are defined in Section 4.1. The right panel is a binscatter plot of the difference between the correlations in
2007 and 1992 against the level of the correlation in 1992.

linkages in the same sector in the US, there are also many that have only low or moderate
correlations.

Figure A.6 and Table A.5 also imply that across our sample period, the sources of knowledge
inputs in the average sector in non-US countries have become more similar to the sources used
in that sector in the US. However, there is heterogeneity in the extent to which knowledge
IO linkages converge to those used in the US. In the right panel of Figure A.6, we display a
binscatter plot of the change in correlation between non-US and US knowledge IO linkages
between 1992 and 2007 (measured using the difference between the coefficients) against the
level of the correlation in 1992. The plot displays a clear pattern: country-sectors that had
knowledge IO linkages that were initially relatively less correlated with those in the same US
sector underwent a relatively large increase in the correlation on average across the 15 years
considered. We summarize our findings from this section in the following observation.

Observation 5: The sources of knowledge inputs are less persistent on average in non-US
country-sectors than in US sectors. In part, this reflects a convergence on average between
each non-US country-sector and the same sector in the US.
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Appendix B Data Appendix

Google Patents Data. Our knowledge IO linkages, stocks of knowledge, and diffusion
and innovation outcomes are constructed using data from the Google Patents Public Data
available from IFI CLAIMS Patent Services and Google (2022). This paper uses the November
2021 version of the database, which includes patents applied for at 105 different national and
regional patent offices between 1782 and 2021 with patent inventors located in 242 different
countries and regions.47 Each patent used in our analysis is linked to the patents it cites
(from any year since 1782) and the patents that cite it (through 2021).

We draw data from Google Patents at the patent family level, where a patent family is the
collection of all applications for a given innovation. A patent application to a patent office
potentially comprises multiple patent documents submitted to that office or that are produced
in the examination and granting process. Some of these documents include original and
revised primary documents and some represent supplementary documents, such as non-patent
literature and search reports.48

We begin by determining the focal set of patent families that are the object of our
analysis. These families have non-missing data for IPC version 8 codes, filing dates, and
inventor countries listed in their primary series documents as defined in point 11 of WIPO
(2016) (i.e., those with letter groups 1–3).49 We refer to these primary series documents as
primary publications and to all other documents as supplementary publications. All of our
analysis examines effects on the focal set of patent families for which data are collected solely
from primary publications. For patent families that are linked to this focal set of patent
families through forward and backward citations, we prioritize recording data from primary
publications but make use of information in supplementary publications if the relevant
information (e.g., the IPC codes) is missing from all available primary publications of the
linked families.

Out of a total of 74.8 million patent families in the Google Patents database, 67.9 million
of them have at least one 4-character IPC code, which is a minimum requirement in order for
them to be included in the data underlying the knowledge IO tables we construct. Meanwhile,
71.8 million patent families have filing dates, while only 20.9 million have inventor country

47The large number of locations is accounted for by the inclusion of sub-national regions, such as Hong
Kong, which we keep as separate regions whenever trade data is also available for the sub-national region.

48The Google Patents database contains a total of 136.1 million different patent documents.
4992% of patent publications are primary series documents, and 98% of patent families have at least one

primary series document filed.
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information.50 In total, 18.9 million patent families have all three sets of information. The
focal set of patent families is the subset of 18.0 million patent families which derive all of this
information from primary publications.

As there are potentially multiple sets of filing dates, inventor countries, and IPC codes
coming from the different publications within a patent family, we aggregate all of this
information up to the patent-family level using the following rules. The filing date is the
earliest of the filing dates found in the family’s primary publications. The list of inventor
countries are those in the longest vector of inventor countries found in the family’s primary
publications.51 The set of IPC codes for a patent family corresponds to the superset of all
distinct 4-character IPC codes contained in the family’s primary publications. For patent
families that are linked to focal patent families, data for any of these fields that are missing
from primary publications are then taken from supplementary publications to fill in data
gaps.52 We record whether or not a patent family is triadic using information on the patent
offices to which the patent family’s applications are submitted. In the rest of this section and
throughout the paper, patent refers to the data associated with a patent family as measured
according to this procedure.

Our knowledge IO table is constructed from the backward citations of focal patent families.
To identify these citations, for each focal patent we record the list of distinct linked cited
patents that appear in any of the primary publications of the citing focal patent.53 In total,
there are 10.8 million focal patent families with at least one such backward citation. Almost
all of these have at least one backward citation in a primary publication that cites a patent
that has a 4-character IPC code and are therefore included in the set of patents whose data
underlie the technology subclass-to-technology subclass knowledge IO table.54

Using this data, we allocate focal patents to countries and technology categories to construct
variables at the level of aggregation used in our analysis. We assign shares of each patent

50The number of patent families with assignee country information is only slightly higher at 23.1 million
patent families covered. We do not use assignee country information to allocate patent families to countries as
described below since the location of a patent assignee may not correspond to the location where innovation
activity takes place, particularly for assignees that are multinational businesses.

51Note that the list of inventor countries may, by design, contain multiple instances of the same country, as
different inventors can reside in the same country.

52By construction, this does not occur for our focal set of patent families.
53To compute the innovation outcome variables based on counts of forward citations received by focal

patents from the linked patents that cite them, we additionally record the list of distinct cited (focal) patents
that appear in the supplementary publications of the citing patents whenever a citing patent family has
no citations in its primary publications. We do this to maximize the coverage of forward citations of focal
patents in our data.

54Only 17k focal patents cite patents that do not have IPC code data.
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to countries in proportion to the share of inventors from each country listed in the patent
application documents.

To produce a pre-concordance dataset at the country-technology subclass-filing year level
for our innovation outcome variables, we treat each distinct technology subclass listed on a
focal patent family as a separate patent. We add up the (fractional) count of each outcome for
focal patents listing each technology class in each filing year and each country after applying
the inventor-country weights to those patents. In particular, for a given country-technology
subclass-year grouping of patents, we count the amounts of the following variables: total
patents, total forward citations and five-year forward citations received by those patents, and
total and five-year foreign forward citations (i.e., those citations received by the grouping of
patents from patents in other countries, where we use inventor-country weights for both cited
and citing patents).

For technology subclass-to-technology subclass backward citations, which are the data
underlying our measurement of knowledge IO linkages, we additionally treat each distinct
technology subclass listed on a linked cited patent as a separate patent. We calculate the
number of backward citations of a given country-output technology subclass-filing year
grouping to each input technology subclass of the patents cited by the grouping using
inventor-country shares as weights and treating both input and output patents with multiple
technology subclasses as multiple patents.55 We use the counts contained in the cells of
the resulting technology subclass-to-technology subclass input-output matrix to measure
backward citations for our diffusion outcome variables.

Concordance Details and Sources. We use many concordances between data classifica-
tion systems in this paper. Below, we describe the processes used to apply the concordances
in more detail and provide the locations at which the concordance files can be accessed.

We first crosswalk the Google Patents data on knowledge stocks, defined in Section 5.2,
patent counts, and forward and backward citations, all of which are measured at the 4-
character IPC version 8 level, to the 2002 BEA sector categories in two stages. The first
stage uses the concordance weights between IPC technology subclasses and 2002 6-digit HS
codes developed by Lybbert and Zolas (2014) and then takes these data from 2002 6-digit
HS codes into 1992 6-digit HS codes.56 This second concordance uses equal weights for each

55These counts are also computed for backward citations to each input technology subclass for cited US,
domestic, and foreign patents by citing country-technology subclass-year patents (using inventor-country
weights for both cited and citing patents).

56There is no concordance between IPC technology subclasses and 1992 6-digit HS codes available.
The first set of concordance weights can be accessed at https://sites.google.com/site/nikolaszolas/
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1992 6-digit HS code into which a given 2002 6-digit HS code maps.57

The second stage, which is also applied to the BACI trade data that are categorized by
1992 6-digit HS codes, applies three distinct concordances to convert the data to the endpoint
2002 BEA classification. The first concordance identifies the 1987 4-digit SIC codes associated
with each 1992 6-digit HS code using an unweighted mapping between the two classification
systems.58 The second concordance converts 1987 4-digit SIC codes into 2002 6-digit NAICS
codes, again using an unweighted mapping between the classifications.59 Combining these two
concordances provides the set of 2002 6-digit NAICS codes associated with each 1992 6-digit
HS code. We construct concordance weights to map the latter into the former using the share
of employment of each NAICS code into which an HS code maps in the total employment
of the NAICS codes associated with each HS code. Data on employment by 2002 NAICS
code are taken from the 2003 County Business Patterns (CBP) dataset, which is the earliest
available disaggregated source of employment data by NAICS code using the 2002 version of
the NAICS codes.60 The third concordance applies the mapping of 2002 6-digit NAICS codes
into the endpoint 2002 BEA sector codes.61 The composite weights between 1992 6-digit
HS codes and our endpoint classification implied by combining the three concordances of
this second stage are precisely the weights mapping subsectors into sectors referred to in
Section 5.2.

For the backward citations data used to measure knowledge IO linkages, we apply these
two crosswalk stages to both the cited and citing technology subclasses.

To measure production IO linkages in different years consistently in terms of our endpoint
2002 BEA classification, we apply concordances that are similar in nature to the second stage
of the crosswalk of technology categories just described. We convert the inter-sectoral sales
data in the 1992, 1997, and 2007 BEA Use tables.

PatentCrosswalk.
57These equal concordance weights are constructed from the unweighted crosswalk available from the

World Bank’s World Integrated Trade Solution (WITS) database accessible after creating an account at
https://wits.worldbank.org/product_concordance.html (using the WITS classification labelling, this
is the H2 to H0 concordance file).

58This is taken from WITS at https://wits.worldbank.org/product_concordance.html (the H0 to
SIC concordance file).

59This file is available from the US Census Bureau at https://www.census.gov/naics/?68967.
60Using employment weights improves upon the alternative of using equal weights that arises due to the

lack of weights in the files used in the first and second concordances of this stage. These data come from the
US Census Bureau and are available at https://www.census.gov/programs-surveys/cbp/data/datasets.
html.

61The concordance file can be found in Appendix A of the BEA 2002 Standard Make and Use Tables
available at https://www.bea.gov/industry/benchmark-input-output-data.
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For 1992, sector categories are based on the 1987 BEA classification system. We map
categories from this system into the 1987 4-digit SIC sectors using a concordance provided
by the BEA.62 We then use the concordance between 1987 4-digit SIC sectors and 2002
6-digit NAICS sectors mentioned earlier to identify the 2002 NAICS sectors associated with
each 1987 BEA sector. Using the same procedure as the second stage above, we compute as
concordance weights the share of employment of each 2002 NAICS code into which a 1987
BEA sector maps in the total employment of those mapped-into 2002 NAICS codes with the
2003 CBP employment data. We combine these weights with the mapping of 2002 6-digit
NAICS codes into the 2002 BEA classification to conduct the crosswalk.

In the 1997 table, the 1997 BEA classification of sectors is based on 1997 6-digit NAICS
sectors. We use the BEA concordance between these classifications and the concordance
between the 1997 6-digit NAICS sectors and 2002 6-digit NAICS sectors to identify the
2002 NAICS sectors associated with each 1997 BEA sector.63 We proceed as before and
construct weights for mapping 1997 BEA sectors into 2002 NAICS sectors using the 2003
CBP employment data and combine these weights with the mapping of 2002 6-digit NAICS
codes into the 2002 BEA classification to conduct the crosswalk.

The data for the 2007 table are available only in terms of the 2012 BEA classification
of sectors, which are themselves based on the 2012 6-digit NAICS sectors. In this case, we
use three separate concordances to identify the 2002 NAICS sectors associated with each
2012 BEA sector. First, we use the crosswalk between the 2012 BEA classification and
the 2012 NAICS sectors provided by the BEA.64 The second and third concordances map
2012 NAICS sectors into 2007 NAICS sectors and 2007 NAICS sectors into 2002 NAICS
sectors, respectively.65 Employment-based concordance weights for mapping between 2012
BEA sectors and 2002 NAICS sectors are constructed using the 2003 CBP employment data.
We combine these weights with the mapping of 2002 NAICS sectors into the 2002 BEA
sectors to complete the crosswalk.

Sample Selection We limit the set of countries in our final sample based on the following
criteria. We drop countries with no triadic patents in any sector or year of the panel and

62This can be found at https://www.bea.gov/industry/benchmark-input-output-data using the 1987
Use table appendices.

63The first of these concordances is available at https://www.bea.gov/industry/
benchmark-input-output-data using the appendices of the 1997 Use table (after redefinitions)
while the second concordance is available at https://www.census.gov/naics/?68967.

64This is available in the appendix of the 2007 Use table found at https://www.bea.gov/industry/
input-output-accounts-data.

65Both concordance files are available at https://www.census.gov/naics/?68967.
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countries with a population of less than one million in 1995 to avoid inclusion of countries
where patenting outcomes may be too noisy. We also drop those countries that have exports to
GDP or imports to GDP ratios in 2015 above the 98th percentile or below the 2nd percentile
of those statistics among the remaining set of countries or countries that have imports to
GDP or exports to GDP ratios in 2015 that are larger than one. This restricts countries that
trade for reasons unrelated to production or consumption, such as countries that primarily
act as intermediaries. Finally, we keep the top 25% of the remaining countries based on total
triadic patents over the sample. This restriction excludes countries where innovations are
either infrequent or relatively low quality from a global perspective. We restrict based on
triadic patents because it is a measure of quality that is unrelated to citations. Including
these countries would tend to bias our estimates downwards, since it would increase instances
of zero or near-zero patenting in a country-sector-year, and would generate noise in our
outcomes.

Our final sample contains the following 83 countries: Albania, United Arab Emirates,
Argentina, Armenia, Australia, Austria, Belgium, Bangladesh, Bulgaria, Belarus, Bolivia,
Brazil, Canada, Switzerland, Chile, China, Colombia, Costa Rica, Czech Republic, Germany,
Denmark, Dominican Republic, Algeria, Ecuador, Egypt, Spain, Estonia, Finland, France,
United Kingdom, Georgia, Ghana, Greece, Guatemala, Croatia, Hungary, Indonesia, India,
Ireland, Iran, Israel, Italy, Jordan, Japan, Kazakhstan, Kenya, South Korea, Kuwait, Lebanon,
Sri Lanka, Lithuania, Latvia, Morocco, Moldova, Mexico, Mauritius, Malaysia, Netherlands,
Norway, New Zealand, Pakistan, Panama, Peru, Philippines, Poland, Portugal, Paraguay,
Russian Federation, Saudi Arabia, Singapore, Slovakia, Slovenia, Sweden, Thailand, Trinidad
and Tobago, Tunisia, Turkey, Ukraine, Uruguay, Uzbekistan, Viet Nam, South Africa, and
Zimbabwe.
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Appendix C Trade Flows and Technology Diffusion

In this appendix, we show additional results to supplement the discussion in the main text
on how to separately identify the effect of USTech from that of USEmbTech, as well as
additional results on the falsification exercises described in Section 6.3.

C.1 Effect of USTech on Innovation Outcomes

As described in the main text, in our baseline results the estimate on USTech is negative and
significant. However, we cannot interpret this estimate as the only effect of USTech since
our measures of USTech and EmbTechK are correlated by construction. This means that a
thought exercise in which only USTech changes, keeping other regressors in the model fixed,
is not possible as the underlying elements that make up USTech are also the underlying
elements that make up EmbTechK. In order to understand the effect of USTech alone that
is orthogonal to EmbTechK, we first residualize EmbTechK with respect to USTech as
follows:

lnEmbTechKh
i,t = γ lnUSTechh

t + ηi,t + η
n(h)
t + ηh

i + νh
i,t

lnResid EmbTechKh
i,t = lnEmbTechKh

i,t − γ̂ lnUSTechh
t .

By the Frisch-Waugh-Lowell theroem, replacing lnEmbTechKh
i,t with its orthogonalized

form lnResid EmbTechKh
i,t will not change its estimate. However, a benefit of this orthog-

onalization process is that the variable USTech will no longer move hand in hand with
EmbTech. Table C.1 shows the results from the original baseline regression as well as the
regression with the residualized EmbTechK with Patents as the outcome variable. The
estimate on USTech in the residualized regression is 0.111, in contrast to the -0.761 in the
baseline. We can hence say that the broader effect of US technology on patenting activity
that is orthogonal to embodied technology is 0.111. We also run a OLS regression without any
of the endogenous embodied technology variables considered in our main specification as a
sanity check. We find that the effect of USTech in a model without the correlated EmbTech
varibales is very close to the estimate in the residualized regression. We find similar results
for the other dependent variables considered in our baseline.66

66We skip presenting results for all variables for brevity. Results are available upon request.
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Table C.1: Effect of USTech on Innovation Outcomes

(1) (2) (3)
Baseline: IV Residualized: IV OLS

Patents Patents Patents

ln EmbTechK 0.666***
(0.048)

ln Resid EmbTechK 0.666***
(0.048)

ln EmbTechP 0.003** 0.003**
(0.001) (0.001)

ln EmbTechDiag 0.019 0.019
(0.012) (0.012)

ln OwnTech 0.005** 0.005** 0.001
(0.002) (0.002) (0.002)

ln USTech -0.761*** 0.111*** 0.113***
(0.064) (0.014) (0.011)

ln USTechDiag 0.097*** 0.097*** 0.106***
(0.015) (0.015) (0.010)

Observations 478,880 478,880 478,880

Notes: All dependent variables are first averaged over the three-year window t to t+2, and transformed as follows: ln(1+Outcome),

where Outcome is the variable specified on column titles. Other controls include Lags of log total exports to world and log total

imports from world. The following fixed effects are included in each column: Country*Sector, Country*Year, and Summary-

Sector*Year. All standard errors are clustered twoways: Country*Sector and Sector*Year

C.2 Role of Trade Flows on Technology Diffusion

Randomization Procedure We randomize the allocation of all the available flows of US
imports data across years, countries, and sub sectors. The randomization is done in three
layers. First, for each year we randomly draw, without replacement, another year’s trade
data. Second, within each year, for each country we randomly draw, without replacement,
another country’s trade data. Finally within each year and for all countries within that year,
each sub sector’s trade data is drawn, without replacement, from the set of trade flows within
that year and country. The final sub sector allocation is kept consistent across all countries to
ensure that the instruments used in the first stage are still valid. The following is an example
of one such random allocation of trade flows: trade data for 1998 is drawn from 2011 trade
data. Data for 1998 China is drawn from 2011 France data, while data for 1998 Australia
is drawn from 2011 Canada data. Finally, Chinese imports of shoes from the US in 1998 is
given by French imports of chairs from the US in 2011, and Australian imports of shoes in
1998 is given by Canadian imports of chairs in 2011.
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Additional Results Table C.2 reports the results from the randomization exercise outlined
in Section 6.3 for three outcome variables - Patents, FwdCites, and USBackCites. For
each outcome variable we report the baseline estimates as well as the mean and standard
deviations of the coefficients from 100 draws of the randomization procedure described above.

Table C.2: Falsification Exercise

(1) (2) (3) (4) (5) (6)
Patents FwdCites USBackCites

BD RD BD RD BD RD

ln EmbTechK 0.666 0.084 0.545 0.091 1.023 0.141
(0.048) (0.014) (0.054) (0.017) (0.082) (0.026

ln EmbTechP 0.003 0.005 0.002 0.004 0.005 0.008
(0.001) (0.001) (0.002) (0.001) (0.002) (0.001)

ln EmbTechDiag 0.019 0.001 0.001 0.001 0.023 0.002
(0.012) (0.001) (0.001) (0.002) (0.021) (0.003)

Notes: Table compares estimates from the baseline regression described in Equation (11) to the estimates from the regression

described in Equation (14) that uses variables constructed with randomized trade data. Columns (1), (3), (5), titled "BD",

uses baseline data and reports the appropriate coefficient and clustered standard errors in parenthesis. Columns (2), (4), (6),

titled "RD", uses randomized data and reports the mean and standard deviation (in parenthesis) of the coefficients from 100

randomizations of the underlying trade trade. All dependent variables are first averaged over the three-year window t to t + 2,

and transformed as follows: ln(1 + Outcome), where Outcome is the variable specified on column titles. Other controls include

Lags of ln OwnT echK, ln UST ech, ln UST echDiag, log total exports to world and log total imports from world. The following

fixed effects are included in each column: Country*Sector, Country*Year, and Summary-Sector*Year. Baseline standard errors

are clustered twoways: Country*Sector and Sector*Year
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Appendix D Additional Figures and Tables

OLS results. Table D.1 reports the OLS results for the baseline specification.

Table D.1: Main Results OLS

(1) (2) (3) (4) (5) (6)
OLS OLS OLS OLS OLS OLS

Patents FwdCites FwdRate USBackCites USBackRate USBackShare

ln EmbTechK 0.010*** 0.003 -0.003 0.004 0.000 -0.004**
(0.002) (0.003) (0.006) (0.004) (0.008) (0.002)

ln EmbTechP 0.003*** 0.003*** -0.001 0.005*** 0.000 0.000
(0.001) (0.001) (0.001) (0.002) (0.001) (0.000)

Observations 478,880 478,880 368,950 478,880 368,950 364,724
R-squared 0.983 0.974 0.594 0.962 0.615 0.501

Notes: All dependent variables are first averaged over the three-year window t to t+2, and transformed as follows: ln(1+Outcome),

where Outcome is the variable specified on column titles. Other controls include Lags of ln EmbT echDiag, ln OwnT echK,

ln UST ech, ln UST echDiag, log total exports to world and log total imports from world. The following fixed effects are

included in each column: Country*Sector, Country*Year, and Summary-Sector*Year. All standard errors are clustered twoways:

Country*Sector and Sector*Year

Lagged effects of knowledge diffusion. We estimate Equation (11) with the outcome
variable measured at period t (rather than a three-year window) and the regessors taken at
one- to five-year lags. The results show similar patterns as the baseline results and are reported
in Figure D.1. In all regressions the set of controls are the same as in the baseline regressions.
The results at different lags are similar in magnitude to the baseline results. In most cases,
the coefficient estimates on longer lags are smaller for EmbTechK, albeit quantitatively
similar. This is consistent with a theory in which diffusion is strongest early on, when the
technology is most likely to be embodied in traded goods, and gradually becomes weaker as the
technology frontier progresses beyond the technology. On the other hand, the coefficients on
EmbTechP get bigger over time, but remain relative very small compared to the coefficients
on EmbTechK. For USBackRate, the coefficient estimate becomes statistically significant
at a three-year lag for EmbTechK but remains statistically insignificant at other lags.
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Table D.2: Five-Year Forward Average Outcomes

(1) (2) (3) (4) (5) (6)
IV IV IV IV IV IV

Patents FwdCites FwdRate USBackCites USBackRate USBackShare

lnEmbTechK 0.609*** 0.414*** 0.039 0.880*** 0.068 -0.006
(0.044) (0.049) (0.052) (0.075) (0.063) (0.013)

lnEmbTechP 0.002* 0.001 -0.000 0.003 0.000 0.000
(0.001) (0.001) (0.001) (0.002) (0.002) (0.000)

Observations 478,880 478,880 391,742 478,880 391,742 388,237
F-Stat EmbTechK 412.6 412.6 558.1 412.6 558.1 627.0
F-Stat EmbTechP 12806.4 12806.4 16632.3 12806.4 16632.3 17451.9
F-Stat EmbTechDiag 322.1 322.1 340.7 322.1 340.7 343.5

Notes: All dependent variables are first averaged over the three-year window t to t+2, and transformed as follows: ln(1+Outcome),

where Outcome is the variable specified on column titles. Other controls include Lags of ln EmbT echDiag, ln OwnT echK,

ln UST ech, ln UST echDiag, log total exports to world and log total imports from world. The following fixed effects are

included in each column: Country*Sector, Country*Year, and Summary-Sector*Year. All standard errors are clustered twoways:

Country*Sector and Sector*Year

Downstream embodied technology. In our baseline results, we use upstream linkages
from the IO tables—i.e., how important a sector is as a supplier of knowledge and products—to
construct our measure of embodied technology imports. A concern with this implementation
is that the upstream linkages are not important. Instead, the empirical results are capturing
technology spillovers to closely related sectors. To test this possibility, we construct alternative
variables of knowledge-weighted and production-weighted embodied technology imports
using downstream linkages (the importance of sectors as users of knowledge and products).
The alternative variables capture important economic relationships but are based on the
reverse flow of knowledge and products. We find quantitatively similar and statistically
significant coefficient estimates on the upstream variables (EmbTechK and EmbTechP )
when controlling for the downstream variables.

Country sample. We consider an alternative specification where we restrict the sample of
countries to the top 40 countries based on the total number of patents (Table D.4). We find
larger point estimates for the main outcomes, which we take as being suggestive that patenting
does not fully capture innovative activity in many lower patenting countries. Additionally, in
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Table D.3: Downstream Linkages

(1) (2) (3) (4) (5) (6) (7)
IV IV IV IV IV IV IV

Patents Patents FwdCites FwdRate USBackCites USBackRate USBackShare

lnEmbTechK 0.562*** 0.436*** 0.018 0.828*** 0.009 -0.015
(0.042) (0.048) (0.048) (0.072) (0.055) (0.011)

lnEmbTechP 0.003** 0.003** -0.001 0.007*** 0.001 0.000
(0.001) (0.001) (0.001) (0.002) (0.002) (0.000)

lnEmbTechDownK 0.190*** 0.084*** 0.093*** 0.023 0.173*** 0.061** 0.015***
(0.018) (0.019) (0.023) (0.020) (0.035) (0.025) (0.005)

lnEmbTechDownP -0.001* -0.001* -0.002*** 0.001 -0.005*** -0.002** -0.000**
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.000)

Observations 478,880 478,880 478,880 368,950 478,880 368,950 364,724
F-Stat EmbTechK 328.1 328.1 377.8 328.1 377.8 379.0
F-Stat EmbTechP 4279.8 4279.8 13738.3 4279.8 13738.3 15599.5
F-Stat EmbTechDiag 33208.5 33208.5 21813.0 33208.5 21813.0 22159.3
F-Stat EmbTechDownK 1768.7 647.7 647.7 1039.8 647.7 1039.8 1172.9
F-Stat EmbTechDownP 30561.9 16029.3 16029.3 21181.8 16029.3 21181.8 22241.7

Notes: All dependent variables are first averaged over the three-year window t to t+2, and transformed as follows: ln(1+Outcome),

where Outcome is the variable specified on column titles. Other controls include Lags of ln EmbT echDiag, ln OwnT echK,

ln UST ech, ln UST echDiag, log total exports to world and log total imports from world. The following fixed effects are

included in each column: Country*Sector, Country*Year, and Summary-Sector*Year. All standard errors are clustered twoways:

Country*Sector and Sector*Year

many of these countries, patenting as an institution may be prohibitively expensive, provide
insufficient protection, or simply be underdeveloped. We also find that the coefficient for
EmbTechK for USBackRate becomes statistically significant, consistent with our view that
this variable may be noisier in some countries.

Alternative instruments. Our baseline instrument isolates US supply shocks by examining
US exports to all countries outside of a country’s cluster. We construct the cluster as the
set of countries that fall in the same quintiles of GDP-per-capita and total trade (exports
plus imports) to GDP. We construct alternative instruments using both the traditional
leave-one-out instrument, which can be viewed as a cluster with a single country (Table D.5),
and an instrument using all other countries within the country’s cluster (Table D.6). The
coefficient estimates are a similar magnitude for the traditional leave-one-out instrument.
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Table D.4: Top 40 Countries by Total Patents

(1) (2) (3) (4) (5) (6)
IV IV IV IV IV IV

Patents FwdCites FwdRate USBackCites USBackRate USBackShare

lnEmbTechK 0.793*** 0.631*** 0.106*** 0.985*** 0.139*** 0.014
(0.052) (0.065) (0.041) (0.082) (0.046) (0.009)

lnEmbTechP 0.002 0.001 -0.003** 0.003 -0.002* -0.000
(0.002) (0.002) (0.001) (0.003) (0.001) (0.000)

Observations 233,600 233,600 225,109 233,600 225,109 224,308
F-Stat EmbTechK 900.4 900.4 1000.4 900.4 1000.4 1133.2
F-Stat EmbTechP 18115.4 18115.4 22968.8 18115.4 22968.8 23722.8
F-Stat EmbTechDiag 274.4 274.4 299.6 274.4 299.6 301.7

Notes: All dependent variables are first averaged over the three-year window t to t+2, and transformed as follows: ln(1+Outcome),

where Outcome is the variable specified on column titles. Other controls include Lags of ln EmbT echDiag, ln OwnT echK,

ln UST ech, ln UST echDiag, log total exports to world and log total imports from world. The following fixed effects are

included in each column: Country*Sector, Country*Year, and Summary-Sector*Year. All standard errors are clustered twoways:

Country*Sector and Sector*Year

For the within-cluster instrument, the coefficient estimates for Patents and USBackCites

become smaller, but remain statistically significant. This is consistent with our view that
excluding countries within the country cluster, as with our baseline instrument, should remove
correlated demand shocks.

Alternative transformations of outcomes. In our baseline specification, we take the
log of one plus outcome variable to avoid excluding zero-valued observations. We find similar
results using the asinh transformation (Table D.7) and when we remove zero observations
(Table D.8).67

Other results. We find similar results when we focus on alternative measures of the
outcomes. Table D.9 reports the results using triadic patents—patents that are applied for in

67We find different coefficient estimates using the log(Y ) transformation (as opposed to 1 + Y ). However,
these results are driven by observations with small values of patenting, where we note that observations may
have fewer than one patent because of our probabilistic mapping. If we additionally include a cutoff (e.g.,
only observations with greater than one patent) then the results are similar to the baseline results. Results
are available upon request.
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Table D.5: Leave-One-Out Instrument

(1) (2) (3) (4) (5) (6)
IV IV IV IV IV IV

Patents FwdCites FwdRate USBackCites USBackRate USBackShare

lnEmbTechK 0.665*** 0.545*** 0.052 1.022*** 0.075 0.002
(0.048) (0.054) (0.048) (0.082) (0.055) (0.011)

lnEmbTechP 0.003** 0.002* -0.001 0.005* 0.000 0.000
(0.001) (0.001) (0.001) (0.002) (0.002) (0.000)

Observations 478,880 478,880 368,950 478,880 368,950 364,724
F-Stat EmbTechK 412.0 412.0 609.5 412.0 609.4 687.2
F-Stat EmbTechP 12804.0 12804.0 17580.2 12804.0 17580.1 18605.6
F-Stat EmbTechDiag 321.1 321.1 348.4 321.1 348.4 349.0

Notes: All dependent variables are first averaged over the three-year window t to t+2, and transformed as follows: ln(1+Outcome),

where Outcome is the variable specified on column titles. Other controls include Lags of ln EmbT echDiag, ln OwnT echK,

ln UST ech, ln UST echDiag, log total exports to world and log total imports from world. The following fixed effects are

included in each column: Country*Sector, Country*Year, and Summary-Sector*Year. All standard errors are clustered twoways:

Country*Sector and Sector*Year

the US, European, and Japanese patent offices—and only foreign citations. Table D.10 reports
the results for the diffusion outcomes when domestic citations are included in USBackShare,
when the own-sector citations are included in the diffusion outcomes, and for the subset of
triadic patents. We also find similar results, albeit quantitatively smaller, when we construct
knowledge stocks using patent counts, rather than citation-weighted patenting (Table D.11).
We suspect that citation-weighting patents helps to remove low-quality patents (e.g., frivolous
patents) that do not capture much knowledge content. Consequently, we expect that this
measure is noisier and, as a result, downward bias compared to the true estimate of knowledge
spillovers.
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Table D.6: Leave-One-Out Within Cluster Instrument

(1) (2) (3) (4) (5) (6)
IV IV IV IV IV IV

Patents FwdCites FwdRate USBackCites USBackRate USBackShare

lnEmbTechK 0.106*** 0.013 -0.021 0.166*** 0.024 -0.001
(0.022) (0.030) (0.048) (0.040) (0.059) (0.013)

lnEmbTechP 0.004*** 0.003*** -0.001 0.006*** 0.001 0.000
(0.001) (0.001) (0.001) (0.002) (0.002) (0.000)

Observations 478,880 478,880 368,950 478,880 368,950 364,724
F-Stat EmbTechK 379.1 379.1 252.3 379.1 252.3 251.6
F-Stat EmbTechP 945.9 945.9 1482.1 945.9 1482.1 1587.5
F-Stat EmbTechDiag 88.1 88.1 62.9 88.1 62.9 63.3

Notes: All dependent variables are first averaged over the three-year window t to t+2, and transformed as follows: ln(1+Outcome),

where Outcome is the variable specified on column titles. Other controls include Lags of ln EmbT echDiag, ln OwnT echK,

ln UST ech, ln UST echDiag, log total exports to world and log total imports from world. The following fixed effects are

included in each column: Country*Sector, Country*Year, and Summary-Sector*Year. All standard errors are clustered twoways:

Country*Sector and Sector*Year
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Figure D.1: Main Outcomes Estimated at Different Lags

(a) Patents (b) USBackCites

(c) FwdCites (d) USBackRate

(e) FwdRate (f) USBackShare

Notes: Coefficient estimates for five models based on Equation (11), in which the lag of the regressors is set from one to five

years. Outcome variables are calculated as the value in period t.71



Table D.7: asinh(Y ) Transformation

(1) (2) (3) (4) (5) (6)
IV IV IV IV IV IV

Patents FwdCites FwdRate USBackCites USBackRate USBackShare

lnEmbTechK 0.769*** 0.600*** 0.041 1.082*** 0.095 0.002
(0.055) (0.061) (0.058) (0.090) (0.063) (0.011)

lnEmbTechP 0.003** 0.002 -0.001 0.005* 0.000 0.000
(0.002) (0.002) (0.001) (0.003) (0.002) (0.000)

Observations 478,880 478,880 368,950 478,880 368,950 364,724
F-Stat EmbTechK 412.6 412.6 609.6 412.6 609.6 686.7
F-Stat EmbTechP 12806.4 12806.4 17535.9 12806.4 17535.9 18557.1
F-Stat EmbTechDiag 322.1 322.1 349.5 322.1 349.5 350.0

Notes: All dependent variables are first averaged over the three-year window t to t+2, and transformed as follows: ln(1+Outcome),

where Outcome is the variable specified on column titles. Other controls include Lags of ln EmbT echDiag, ln OwnT echK,

ln UST ech, ln UST echDiag, log total exports to world and log total imports from world. The following fixed effects are

included in each column: Country*Sector, Country*Year, and Summary-Sector*Year. All standard errors are clustered twoways:

Country*Sector and Sector*Year
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Table D.8: Non-Zero Patent Sample

(1) (2) (3) (4) (5) (6)
IV IV IV IV IV IV

Patents FwdCites FwdRate USBackCites USBackRate USBackShare

lnEmbTechK 0.796*** 0.574*** 0.052 1.099*** 0.076 0.002
(0.052) (0.062) (0.048) (0.083) (0.055) (0.011)

lnEmbTechP 0.004** 0.002 -0.001 0.005** 0.000 0.000
(0.001) (0.002) (0.001) (0.002) (0.002) (0.000)

Observations 368,950 368,950 368,950 368,950 368,950 364,724
F-Stat EmbTechK 609.6 609.6 609.6 609.6 609.6 686.7
F-Stat EmbTechP 17535.9 17535.9 17535.9 17535.9 17535.9 18557.1
F-Stat EmbTechDiag 349.5 349.5 349.5 349.5 349.5 350.0

Notes: All dependent variables are first averaged over the three-year window t to t+2, and transformed as follows: ln(1+Outcome),

where Outcome is the variable specified on column titles. Other controls include Lags of ln EmbT echDiag, ln OwnT echK,

ln UST ech, ln UST echDiag, log total exports to world and log total imports from world. The following fixed effects are

included in each column: Country*Sector, Country*Year, and Summary-Sector*Year. All standard errors are clustered twoways:

Country*Sector and Sector*Year
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Table D.9: Other Innovation Outcomes

(1) (2) (3) (4) (5)
IV IV IV IV IV

Patents FwdCites FwdRate FwdCites FwdRate

ln EmbTechK 0.311*** 0.308*** 0.126*** 0.506*** 0.065
(0.027) (0.040) (0.047) (0.053) (0.049)

ln EmbTechP 0.002** 0.001 -0.003** 0.002 -0.001
(0.001) (0.001) (0.001) (0.001) (0.001)

Outcome Triadic Triadic Triadic Foreign Foreign

Observations 478,880 478,880 264,815 478,880 368,950
F-Stat EmbTechK 412.6 412.6 1073.3 412.6 609.6
F-Stat EmbTechP 12806.4 12806.4 30214.5 12806.4 17535.9
F-Stat EmbTechDiag 322.1 322.1 298.5 322.1 349.5

Notes: All dependent variables are first averaged over the three-year window t to t+2, and transformed as follows: ln(1+Outcome),

where Outcome is the variable specified on column titles. Columns (1)-(3) are counts, forward citations, and forward citation rate

of triadic patetns in country-sector-year. Columns (4)-(5) are forward citations received by all patents in a country-sector-year from

foreign patents, and the corresponding citation rate. Other controls include Lags of ln EmbT echDiag, ln OwnT echK, ln UST ech,

ln UST echDiag, log total exports to world and log total imports from world. The following fixed effects are included in each

column: Country*Sector, Country*Year, and Summary-Sector*Year. All standard errors are clustered twoways: Country*Sector

and Sector*Year
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Table D.10: Other Diffusion Outcomes

(1) (2) (3) (4) (5) (6) (7)
IV IV IV IV IV IV IV

USBackShare USBackCites USBackRate USBackShare USBackCites USBackRate USBackShare

lnEmbTechK 0.008 0.895*** 0.050 -0.012 0.590*** 0.225*** 0.032***
(0.011) (0.071) (0.043) (0.011) (0.050) (0.045) (0.010)

lnEmbTechP 0.000 0.004** -0.001 0.000 0.003** -0.002 0.000
(0.000) (0.002) (0.001) (0.000) (0.001) (0.001) (0.000)

Outcome Inc. Domestic Inc. Diagonal Inc. Diagonal Inc. Diagonal Triadic Triadic Triadic

Observations 365,014 478,880 368,950 367,376 478,880 264,815 264,657
F-Stat EmbTechK 670.1 412.6 609.6 618.162 412.6 1073.3 1075.9
F-Stat EmbTechP 18634.2 12806.4 17535.9 18043.5 12806.4 30214.5 30302.5
F-Stat EmbTechDiag 350.2 322.1 349.5 348.6 322.1 298.5 298.0

Notes: All dependent variables are first averaged over the three-year window t to t+2, and transformed as follows: ln(1+Outcome),

where Outcome is the variable specified on column titles. Column (1) is share of backward citations to US patents out of all

citations including to domestic patents. Columns (2)-(4) include citations to own-sector patents. Columns (5)-(7) are citations

made by triadic patents in a country-sector-year. Other controls include Lags of ln EmbT echDiag, ln OwnT echK, ln UST ech,

ln UST echDiag, log total exports to world and log total imports from world. The following fixed effects are included in each

column: Country*Sector, Country*Year, and Summary-Sector*Year. All standard errors are clustered twoways: Country*Sector

and Sector*Year
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Table D.11: Knowledge Stocks Constructed Using Patent Count

(1) (2) (3) (4) (5) (6)
IV IV IV IV IV IV

Patents FwdCites FwdRate USBackCites USBackRate USBackShare

lnEmbTechK 0.200*** 0.194*** 0.014 0.350*** 0.014 -0.003
(0.014) (0.017) (0.012) (0.027) (0.015) (0.003)

lnEmbTechP 0.005*** 0.004** -0.001 0.008*** 0.000 0.000
(0.001) (0.002) (0.001) (0.003) (0.002) (0.000)

Observations 478,880 478,880 368,950 478,880 368,950 364,724
F-Stat EmbTechK 5203.2 5203.2 4925.9 5203.2 4925.9 5038.8
F-Stat EmbTechP 12038.4 12038.4 16441.8 12038.4 16441.8 17044.8
F-Stat EmbTechDiag 380.2 380.2 496.052 380.2 496.1 497.9

Notes: All dependent variables are first averaged over the three-year window t to t+2, and transformed as follows: ln(1+Outcome),

where Outcome is the variable specified on column titles. Other controls include Lags of ln EmbT echDiag, ln OwnT echK,

ln UST ech, ln UST echDiag, log total exports to world and log total imports from world. The following fixed effects are

included in each column: Country*Sector, Country*Year, and Summary-Sector*Year. All standard errors are clustered twoways:

Country*Sector and Sector*Year
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Figure D.2: Distributions of Concentration and Sparsity of US IO Linkages

0
1
0

2
0

3
0

D
e
n
s
it
y

0 .2 .4 .6 .8 1

Concentration (HHI)

1992 knowledge IO

1997 knowledge IO

2002 knowledge IO

2007 knowledge IO

1992 production IO

1997 production IO

2002 production IO

2007 production IO

0
.0

2
.0

4
.0

6
.0

8
.1

D
e
n
s
it
y

0 10 20 30 40

Conditional Indegree (1%)

Notes: Figure plots the distributions of the concentration and conditional indegree measures of US knowledge and
production IO linkages across output sectors for different IO table years. The left panel displays the distributions
of concentration measured by the HHI. The right panel displays the distributions of conditional indegrees for the
condition c = 1%. The HHI and conditional indegrees are defined in text.
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Table D.12: Summary Statistics of IO Linkage Concentration Measures

N Min Max Median Mean Std. Dev.

HHI-Kh
US,t Across All Inputs

1992 287 0.014 0.321 0.041 0.053 0.041
1997 287 0.014 0.300 0.038 0.049 0.036
2002 287 0.014 0.231 0.035 0.045 0.031
2007 287 0.013 0.319 0.032 0.041 0.031
All Years 1,148 0.013 0.321 0.037 0.047 0.035

HHI-Ph
US,t Across All Inputs

1992 287 0.024 0.611 0.112 0.139 0.097
1997 287 0.035 0.823 0.142 0.190 0.146
2002 287 0.034 0.900 0.149 0.192 0.149
2007 287 0.026 0.918 0.114 0.171 0.145
All Years 1,148 0.024 0.918 0.128 0.173 0.138

CID-Kh
USt(1%) Across All Inputs

1992 287 9 33 21 21.387 4.492
1997 287 9 33 22 21.509 4.576
2002 287 11 33 22 21.906 4.618
2007 287 8 34 23 22.662 4.725
All Years 1,148 8 34 22 21.866 4.624

CID-Ph
USt(1%) Across All Inputs

1992 287 3 32 17 16.808 6.055
1997 287 3 30 14 14.387 5.524
2002 287 2 34 15 14.948 6.135
2007 287 2 32 16 16.185 6.233
All Years 1,148 2 34 15 15.582 6.062

HHI-Kh
US,t Across Off-Diagonal Inputs

1992 287 0.013 0.260 0.036 0.044 0.030
1997 287 0.013 0.259 0.034 0.042 0.029
2002 287 0.014 0.231 0.032 0.040 0.027
2007 287 0.013 0.319 0.030 0.038 0.028
All Years 1,148 0.013 0.319 0.033 0.041 0.028

HHI-Ph
US,t Across Off-Diagonal Inputs

1992 287 0.024 0.822 0.110 0.145 0.113
1997 287 0.036 0.888 0.144 0.202 0.172
2002 287 0.035 0.929 0.138 0.200 0.175
2007 287 0.027 0.970 0.115 0.174 0.161
All Years 1,148 0.024 0.970 0.123 0.180 0.159

CID-Kh
USt(1%) Across Off-Diagonal Inputs

1992 287 11 33 23 22.596 4.379
1997 287 11 33 23 22.676 4.644
2002 287 12 34 23 22.753 4.698
2007 287 8 34 24 23.254 4.916
All Years 1,148 8 34 23 22.820 4.664

CID-Ph
USt(1%) Across Off-Diagonal Inputs

1992 287 2 34 17 16.969 6.238
1997 287 2 29 15 14.505 5.599
2002 287 1 34 15 15.268 6.220
2007 287 1 31 17 16.554 6.264
All Years 1,148 1 34 16 15.824 6.158

Notes: Table reports summary statistics of the cross-sectional distributions of the Herfindahl-Hirschman Index (HHI) and condi-
tional indegree (CID) measures of US knowledge and production IO linkages. For measures computed using off-diagonal sectors,
own-sector IO linkages are omitted from the calculation of the IO linkages. The HHI and CID measures are defined in text. The
CID measures count IO linkages that are at least 1%. Std. Dev. is the standard deviation.
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